Lambda Evolution - Past, Present and Future

Y. Bernat

Core C++ Meetup, Dec. 2017

Outline

Lambda Function - What?

Overview

» A new way (C++11) to write a function

Overview

» A new way (C++11) to write a function

» Can be defined locally (while “normal” functions can't)

Overview

» A new way (C++11) to write a function
» Can be defined locally (while “normal” functions can't)
> That's all

Overview

» A new way (C++11) to write a function
» Can be defined locally (while “normal” functions can't)
» That's all :)

Outline

Motivation

Predicate for STL - The Problem

» STL includes many algorithms for common actions on a
collection

Predicate for STL - The Problem

» STL includes many algorithms for common actions on a
collection

» std::find_if - find the first item that matches a criteria

Predicate for STL - The Problem

» STL includes many algorithms for common actions on a
collection
» std::find_if - find the first item that matches a criteria
P> std::copy_if - copy all items that match a criteria

Predicate for STL - The Problem

» STL includes many algorithms for common actions on a
collection
» std::find_if - find the first item that matches a criteria

P> std::copy_if - copy all items that match a criteria
> .

Predicate for STL - The Problem

» STL includes many algorithms for common actions on a
collection
» std::find_if - find the first item that matches a criteria

P> std::copy_if - copy all items that match a criteria
> .

» How do we pass the criteria to the algorithm?

Use a Simple Function

bool between3and7 (int x) {
2 return 3 <= x && x <= T7;
3 }

Use a Simple Function

bool between3and7 (int x) {
return 3 <= x && x <= 7;
}
void £ () {
std::vector<int> v;
// ... fill v with data
auto i = std::find_if (v.begin(), v.end(),

~NOoO oW

Use a Simple Function

bool between3and7 (int x) {
return 3 <= x && x <= 7;

2

3}

4 void £ (O {

5 std::vector<int> v;

6 // ... £fill v with data

7 auto i = std::find_if (v.begin(), v.end(),
8 &between3and7) ;

Use a Simple Function

O ~NO Ol WN

11
12

bool between3and7 (int x) {
return 3 <= x && x <= 7;

¥

void £ () {
std::vector<int> v;

// ... fill v with data

auto i = std::find_if (v.begin(), v.end(),
&betweenl3and7) ;

if (i !'= v.end()) {

std::cout << "First item between 3 and 7 is
<< *i << '"\n';

Use a Simple Function

O o0 ~NO O~ WN

— =
= O

12

= e
1w

bool between3and7 (int x) {
return 3 <= x && x <= 7;

¥

void £ () {
std::vector<int> v;

// ... fill v with data

auto i = std::find_if (v.begin(), v.end(),
&betweenl3and7) ;

if (i '= v.end()) {

std::cout << "First item between 3 and 7 is
<< *i << '"\n';
}
std::vector<int> v2;
std::copy_if (v.begin(), v.end(),
std::back_inserter (v2),

Use a Simple Function

bool between3and7 (int x) {

}

O ~NO O~ WN

11
12
13
14
15
16
17 ¥

return 3 <= x && x <= 7;

void £ () {

std::vector<int> v;

// ... fill v with data
auto i = std::find_if (v.begin(), v.end(),
&betweenl3and7) ;
if (i '= v.end()) {
std::cout <<
<< xi << ;
}

std::vector<int> v2;

std::copy_if (v.begin(), v.end(),
std::back_inserter (v2),
&between3and7) ;

Simple Function - Pros and Cons

» Pros:

Simple Function - Pros and Cons

» Pros:
> It's simple

Simple Function - Pros and Cons

> Pros:
» It's simple
> |t's well known

Simple Function - Pros and Cons

> Pros:

» It's simple

> |t's well known
» Cons:

Simple Function - Pros and Cons

» Pros:
» It's simple
> It's well known
» Cons:
» We need a new one for each case (e.g. between0Oand42)

Simple Function - Pros and Cons

> Pros:

» It's simple

> |t's well known
» Cons:

» We need a new one for each case (e.g. between0Oand42)
» We have to find the correct scope to define it

Simple Function - Pros and Cons

> Pros:

» It's simple

> |t's well known
» Cons:

» We need a new one for each case (e.g. between0Oand42)
» We have to find the correct scope to define it
> We need to find a good name each time

Simple Function - Pros and Cons

> Pros:

» It's simple

> |t's well known
» Cons:

» We need a new one for each case (e.g. between0Oand42)
» We have to find the correct scope to define it

> We need to find a good name each time

» The logic is spread over the code instead of being local

Find Good Names

Jeff Atwood ¥ 2 Follow
; codinghorror

There are two hard things in computer science:
cache invalidation, naming things, and off-by-
one errors.

13 112 REDEsEBEW

12:29 PM - 31 Aug 2014

Use a Functor

» Templates are heavily-used with STL algorithms

Use a Functor

» Templates are heavily-used with STL algorithms

» The predicate doesn't have to be a function pointer

Use a Functor

» Templates are heavily-used with STL algorithms
» The predicate doesn't have to be a function pointer

» It can be anything the "behaves like a function” - anything
that we can use () on it

Use a Functor

» Templates are heavily-used with STL algorithms
» The predicate doesn't have to be a function pointer

» It can be anything the "behaves like a function” - anything
that we can use () on it

> A pointer to a function is a good fit but not the only one

Use a Functor

» Templates are heavily-used with STL algorithms
» The predicate doesn't have to be a function pointer

» It can be anything the "behaves like a function” - anything
that we can use () on it

> A pointer to a function is a good fit but not the only one

» We can overload the call operator () of a class so any object
of this type is also “behaves like a function”

Use a Functor

v

Templates are heavily-used with STL algorithms
The predicate doesn’t have to be a function pointer

It can be anything the "behaves like a function” - anything
that we can use () on it

A pointer to a function is a good fit but not the only one

We can overload the call operator () of a class so any object
of this type is also “behaves like a function”

Such an object is commonly known as “function object” or
“functor” (even if this name isn't accurate)

Functor Example

struct Between {

Functor Example

struct Between {
2 int m_1, m_h;

Functor Example

struct Between {
2 int m_1, m_h;
3 Between(int 1, int h) : m_1(1), m_h(h) {}

Functor Example

struct Between {
2 int m_1, m_h;
3 Between(int 1, int h) : m_1(1), m_h(h) {}
4 bool operator () (int x) {

Functor Example

struct Between {
int m_1, m_h;
Between(int 1, int h) : m_1(1), m_h(h) {}
bool operator () (int x) {
return m_1 <= x && x <= m_h;
}
};

~NOo oW

Functor Example

struct Between {

2 int m_1, m_h;

3 Between(int 1, int h) : m_1(1), m_h(h) {}
4 bool operator () (int x) {

5 return m_1 <= x && x <= m_h;

6 }

7}

8 //

9

auto i = std::find_if(v.begin(), v.end(),

Functor Example

struct Between {
int m_1, m_h;
Between(int 1, int h) : m_1(1), m_h(h) {}
bool operator () (int x) {
return m_1 <= x && x <= m_h;
}
};
//
auto i = std::find_if(v.begin(), v.end(),
Between(3, 7));

O OWONOOOL P~ WwN

[y

Functor Example

—_ =

H O WOWW~NOOLP~WwWwN

struct Between {
int m_1, m_h;
Between(int 1, int h) : m_1(1), m_h(h) {}
bool operator () (int x) {
return m_1 <= x && x <= m_h;

}
};
//

auto i

auto j

std::find_if(v.begin(), v.end(),
Between(3, 7));
std::find_if (v.begin(), v.end(),

Functor Example

struct Between {

2 int m_1, m_h;

3 Between(int 1, int h) : m_1(1), m_h(h) {}
4 bool operator () (int x) {

5 return m_1 <= x && x <= m_h;

6 }

7T 3}

8 //

9 auto i = std::find_if(v.begin(), v.end(),
10 Between (3, 7));

11 auto j = std::find_if(v.begin(), v.end(),
12 Between (0, 42));

Functor - Pros and Cons

» Pros:

Functor - Pros and Cons

» Pros:
» More generic one for multiple cases

Functor - Pros and Cons

» Pros:
» More generic one for multiple cases
» Cons:

Functor - Pros and Cons

» Pros:
» More generic one for multiple cases
» Cons:
> We (still) have to find the correct scope to define it

Functor - Pros and Cons

» Pros:
» More generic one for multiple cases
» Cons:

> We (still) have to find the correct scope to define it
> We (still) need to find a good name each time

Functor - Pros and Cons

» Pros:
» More generic one for multiple cases
» Cons:

> We (still) have to find the correct scope to define it
> We (still) need to find a good name each time
» The logic is (still) spread over the code instead of being local

Functor - Pros and Cons

» Pros:
» More generic one for multiple cases

» Cons:
> We (still) have to find the correct scope to define it
> We (still) need to find a good name each time
» The logic is (still) spread over the code instead of being local
> A lot of boilerplate

Outline

The Solution - Lambda Expression

Lambda Expression (Function)

» Added to C++11

Lambda Expression (Function)

> Added to C++11
» Basic syntax- [1(){ }

Lambda Expression (Function)

» Added to C++11

» Basic syntax- [1(){ }
» [] - “Lambda function introducer” (not a real formal term)

Lambda Expression (Function)

» Added to C++11

» Basic syntax- [1(){ }
» [] - “Lambda function introducer” (not a real formal term)
» Also for capturing, which we'll discuss later

Lambda Expression (Function)

» Added to C++11
» Basic syntax- [1(){ }

» [] - “Lambda function introducer” (not a real formal term)
» Also for capturing, which we'll discuss later

» () - for parameters, as in every function (but usually can be
omitted if empty)

Lambda Expression (Function)

v

Added to C4++11

» Basic syntax- [1(){ }
» [1 - “Lambda function introducer” (not a real formal term)
» Also for capturing, which we'll discuss later

v

() - for parameters, as in every function (but usually can be
omitted if empty)

» { } - the (lambda) function body

Use a Lambda Function

auto i = std::find_if(v.begin(), v.end(),

Use a Lambda Function

auto i = std::find_if(v.begin(), v.end(),
2 [1(int i){

Use a Lambda Function

auto i = std::find_if(v.begin(), v.end(),
2 [1(int i){
3 return 3 <= i && i <= 7;

Use a Lambda Function

auto i = std::find_if(v.begin(), v.end(),

w

[JCGint 1){

return 3

»;

<= i & i <=

Use a Lambda Function

A wWwN

auto i

auto j

std::find_if (v.begin(), v.end (),
[1(int i){
return 3 <= 1 && i <=
B
std::find_if (v.begin(), v.end(),

Use a Lambda Function

auto i = std::find_if(v.begin(), v.end(),
2 [1(int i){
3 return 3 <= i && i <= 7;
4 B
5 auto j = std::find_if(v.begin(), v.end(),
6 [J](int i){
7 return 0 <= i && i <= 42;
8 B

Lambda Function - Pros and Cons

» Pros:

Lambda Function - Pros and Cons

» Pros:
» Written inline, so:

Lambda Function - Pros and Cons

» Pros:

» Written inline, so:
» No need to find the correct scope to define it

Lambda Function - Pros and Cons

» Pros:
» Written inline, so:
» No need to find the correct scope to define it
» No need to find a good name each time

Lambda Function - Pros and Cons

» Pros:

» Written inline, so:

» No need to find the correct scope to define it

» No need to find a good name each time

» The logic is now local, easy to read and to reason about

Lambda Function - Pros and Cons

» Pros:

» Written inline, so:

» No need to find the correct scope to define it

» No need to find a good name each time

» The logic is now local, easy to read and to reason about
» No boilerplate, or at least a minimal one

Lambda Function - Pros and Cons

» Pros:

» Written inline, so:

» No need to find the correct scope to define it

» No need to find a good name each time

» The logic is now local, easy to read and to reason about
» No boilerplate, or at least a minimal one

» Cons:

Lambda Function - Pros and Cons

» Pros:

» Written inline, so:
» No need to find the correct scope to define it
» No need to find a good name each time
» The logic is now local, easy to read and to reason about
» No boilerplate, or at least a minimal one
» Cons:

» We lost the generality achieved with functor

Lambda Function - Pros and Cons

» Pros:

» Written inline, so:
» No need to find the correct scope to define it
» No need to find a good name each time
» The logic is now local, easy to read and to reason about
» No boilerplate, or at least a minimal one
» Cons:

» We lost the generality achieved with functor

» Did we lost even the simplest reuse we had with functions?

Reuse a Lambda Function

void £ () {

Reuse a Lambda Function

void £ () {
2 auto between3and7 =

Reuse a Lambda Function

void £ () {
2 auto between3and7 = [] (int x) {
return 3 <= x && x <= 7;

w

4 };

Reuse a Lambda Function

void £ () {

2 auto between3dand7 = [] (int x) {
3 return 3 <= x && x <= T;

4 };

5 std::vector<int> v;

6 // ... £fill v with data

7

auto i = std::find_if (v.begin(), v.end(),

Reuse a Lambda Function

void £ () {

auto i = std::find_if (v.begin(), v.end(),
between3and7) ;

2 auto between3dand7 = [] (int x) {
3 return 3 <= x && x <= T;

4 };

5 std::vector<int> v;

6 // ... £fill v with data

7

8

Reuse a Lambda Function

O ~NO Ol WD

11
12

void £ () {
auto between3and7 = [] (int x) {
return 3 <= x && x <= 7;

};

std::vector<int> v;

// ... fill v with data

auto i = std::find_if (v.begin(), v.end(),
between3and7) ;

if (i !'= v.end()) {

std::cout << "First item between 3 and 7 is
<< *i << '"\n';

Reuse a Lambda Function

O ~NO O WN

11
12
13
14
15

void £ () {
auto between3dand7 = [] (int x) {
return 3 <= x && x <= T7;
};
std::vector<int> v;
// ... fill v with data
auto i = std::find_if (v.begin(), v.end(),
between3and7) ;
if (i '= v.end()) {
std::cout << "First item between 3 and 7 is
<< *i << '"\n';
}
std::vector<int> v2;
std::copy_if (v.begin(), v.end(),
std::back_inserter (v2),

Reuse a Lambda Function

void £ () {

O ~NO O WN

11
12
13
14
15
16
17 ¥

auto between3and7 = [] (int x) {
return 3 <= x && x <= 7;

};
std::vector<int> v;
// ... fill v with data
auto i = std::find_if (v.begin(), v.end(),
between3and7) ;
if (i !'= v.end()) A{
std::cout <<
<< xi << ;
}

std::vector<int> v2;

std::copy_if (v.begin(), v.end(),
std::back_inserter (v2),
between3and7) ;

Outline

The Missing Part

Return Type of a Lambda Function

» What about declaring the return type?

Return Type of a Lambda Function

» What about declaring the return type?
» Auto deduced from the single (or no) return statement

Return Type of a Lambda Function

» What about declaring the return type?
» Auto deduced from the single (or no) return statement
» Can be mentioned explicitly

Return Type of a Lambda Function

» What about declaring the return type?
» Auto deduced from the single (or no) return statement

» Can be mentioned explicitly
» For cases where the auto deducing result isn't desired

Return Type of a Lambda Function

» What about declaring the return type?
» Auto deduced from the single (or no) return statement

» Can be mentioned explicitly

» For cases where the auto deducing result isn't desired
» For cases with multiple return statements

Return Type of a Lambda Function

» What about declaring the return type?

» Auto deduced from the single (or no) return statement
» Can be mentioned explicitly
» For cases where the auto deducing result isn't desired
» For cases with multiple return statements

» Uses “trailing return type” style (available also for regular
functions)

Compound Initialization

class Logger {

Compound Initialization

class Logger {
2 private:
3 std::ostream& m_stream;

Compound Initialization

class Logger {
private:
std::ostream& m_stream;
public:
Logger (std::ostream& stream)
m_stream(stream) {}

OB WN

Compound Initialization

class Logger {
private:
std::ostream& m_stream;
public:
Logger (std::ostream& stream)
m_stream(stream) {}
// Some actually useful methods here

};

O ~NO O WN

Compound Initialization - 2

class MyClass {

Compound Initialization - 2

class MyClass {
2 private:
3 std::ofstream m_file;

Compound Initialization - 2

class MyClass {
2 private:
3 std::ofstream m_file;
4 Logger m_logger;

Compound Initialization - 2

class MyClass {
private:
std::ofstream m_file;
Logger m_logger;
public:
enum LogTarget { Stdout, File };

OB WN

Compound Initialization - 2

class MyClass {
private:
std::ofstream m_file;
Logger m_logger;
public:
enum LogTarget { Stdout, File };
MyClass (LogTarget target);

O ~NO 1A WN

};

Compound Initialization - 3

MyClass::MyClass(LogTarget target)

Compound Initialization - 3

MyClass::MyClass(LogTarget target)
2 : m_logger(

Compound Initialization - 3

MyClass::MyClass(LogTarget target)
2 : m_logger(
3 [&]1() -> std::ostream& {

Compound Initialization - 3

MyClass::MyClass (LogTarget target)
m_logger (
[&1 () -> std::ostream& {
if (target == Stdout)
return std::cout;

A WwWN

Compound Initialization - 3

MyClass::MyClass (LogTarget target)
m_logger (
[&1 () -> std::ostream& {
if (target == Stdout)
return std::cout;
while (!m_file.is_open())
m_file.open(getFilename());

~NOoO ok wwN

Compound Initialization - 3

MyClass::MyClass (LogTarget target)
m_logger (
[&1 () -> std::ostream& {
if (target == Stdout)
return std::cout;
while (!m_file.is_open())
m_file.open(getFilename());
return m_file;

O ~NO O b Wi

Compound Initialization - 3

MyClass::MyClass (LogTarget target)
m_logger (
[&1 () -> std::ostream& {
if (target == Stdout)
return std::cout;
while (!m_file.is_open())
m_file.open(getFilename());
return m_file;

1)

O 0O ~NOOC1L A~ WN

Compound Initialization - 3

MyClass::MyClass (LogTarget target)

2 m_logger (

3 [&] () -> std::ostream& {

4 if (target == Stdout)

5 return std::cout;

6 while (!m_file.is_open())

7 m_file.open(getFilename());
8 return m_file;

9 1O

10)

Compound Initialization - 3

MyClass::MyClass (LogTarget target)

2 m_logger (

3 [&] () -> std::ostream& {

4 if (target == Stdout)

5 return std::cout;

6 while (!m_file.is_open())

7 m_file.open(getFilename());
8 return m_file;

9 rO

10)

11 {

12 3}

The New Things We Just Saw

» Specifying the return type of a lambda function:

The New Things We Just Saw

» Specifying the return type of a lambda function:
» [1 () -> type { }

The New Things We Just Saw

» Specifying the return type of a lambda function:

> [1 () ->type {1}
» The parentheses are mandatory in this case

The New Things We Just Saw

» Specifying the return type of a lambda function:

> [1 () ->type {1}
» The parentheses are mandatory in this case

» IIFE - Immediately-invoked Function Expressions

The New Things We Just Saw

» Specifying the return type of a lambda function:

> [1 () ->type {1}
» The parentheses are mandatory in this case

» IIFE - Immediately-invoked Function Expressions
» A term borrowed from JS

The New Things We Just Saw

» Specifying the return type of a lambda function:

> [1 () ->type {1}
» The parentheses are mandatory in this case

» IIFE - Immediately-invoked Function Expressions

» A term borrowed from JS
» Sometimes it's useful to declare a lambda function and
immediately invoke it

The New Things We Just Saw

» Specifying the return type of a lambda function:

> [1 () ->type {1}
» The parentheses are mandatory in this case

» IIFE - Immediately-invoked Function Expressions
» A term borrowed from JS
» Sometimes it's useful to declare a lambda function and
immediately invoke it
» Especially useful for initializing things and for simplifying
complex decision making logic

The New Things We Just Saw

» Specifying the return type of a lambda function:

> [1 () ->type {1}
» The parentheses are mandatory in this case

» IIFE - Immediately-invoked Function Expressions
» A term borrowed from JS
» Sometimes it's useful to declare a lambda function and
immediately invoke it
» Especially useful for initializing things and for simplifying
complex decision making logic

» First example of capturing

The New Things We Just Saw

» Specifying the return type of a lambda function:

> [1 () => type { }
» The parentheses are mandatory in this case

» IIFE - Immediately-invoked Function Expressions
» A term borrowed from JS

» Sometimes it's useful to declare a lambda function and
immediately invoke it

» Especially useful for initializing things and for simplifying
complex decision making logic
» First example of capturing
> Let's dive in

Outline

Capturing

Capturing

» Can we reuse the lambda function more like we did with the
manually-written functor?

Capturing

» Can we reuse the lambda function more like we did with the
manually-written functor?

> Yes, to some extent

Capturing

» Can we reuse the lambda function more like we did with the
manually-written functor?
> Yes, to some extent

» Capturing is the way to give access for the lambda expression
to externally declared variables

Capturing - Syntax

> [x] - copy x in

Capturing - Syntax

> [x] - copy x in

> [&x] - get access to x “by-reference”

Capturing - Syntax

> [x] - copy x in
> [&x] - get access to x “by-reference”

> [x, &y] - copy x in and get access to y by-ref

Capturing - Syntax

[x] - copy x in

[&x] - get access to x “by-reference”

[x, &y] - copy x in and get access to y by-ref

[this] - get access to all the members of the current object

Capturing - Syntax

[x] - copy x in

[&x] - get access to x “by-reference”

[x, &y] - copy x in and get access to y by-ref

[this] - get access to all the members of the current object
» (if used from inside a member function, of course)

Capturing - Syntax

[x] - copy x in

[&x] - get access to x “by-reference”

[x, &y] - copy x in and get access to y by-ref

[this] - get access to all the members of the current object

» (if used from inside a member function, of course)
» Including private members!

Capturing - Syntax

> [x] - copy x in

> [&x] - get access to x “by-reference”

> [x, &y] - copy x in and get access to y by-ref

> [this] - get access to all the members of the current object
» (if used from inside a member function, of course)
» Including private members!

> [=] - copy in everything used inside

Capturing - Syntax

> [x] - copy x in

> [&x] - get access to x “by-reference”

> [x, &y] - copy x in and get access to y by-ref

> [this] - get access to all the members of the current object
» (if used from inside a member function, of course)
» Including private members!

> [=] - copy in everything used inside

[&] - access by-ref everything that used inside

Capturing - Syntax

vvyyvyy

v

[x] - copy x in

[&x] - get access to x “by-reference”

[x, &y] - copy x in and get access to y by-ref

[this] - get access to all the members of the current object

» (if used from inside a member function, of course)
» Including private members!

[=] - copy in everything used inside

> [&] - access by-ref everything that used inside

[=, &x] - copy in everything, except x, which will be used
by-ref

Capturing - Syntax

vvyyy

v

[x] - copy x in

[&x] - get access to x “by-reference”

[x, &y] - copy x in and get access to y by-ref

[this] - get access to all the members of the current object

» (if used from inside a member function, of course)
» Including private members!

[=] - copy in everything used inside

[&] - access by-ref everything that used inside

[=, &x] - copy in everything, except x, which will be used
by-ref

Both “default capturing” options capture also this, if
available and relevant

Use capturing

Use capturing

int lo = 3, hi = 7;
2 auto between = [&lo, &hi](int i){

Use capturing

int lo = 3, hi = 7;
2 auto between = [&lo, &hi] (int i){
3 return lo <= i && i <= hi;
4 };

Use capturing

int lo = 3, hi = 7;
auto between = [&lo, &hi] (int i){
return lo <= i && i <= hi;

};

OB WN

auto i = std::find_if(v.begin(), v.end(), between);

Use capturing

int lo = 3, hi = 7;
auto between = [&lo, &hi] (int i){
return lo <= i && i <= hi;

};

auto i = std::find_if(v.begin(), v.end(), between);

O ~NO 1A~ WN

Use capturing

O 00O ~NOOCTL P~ WN

int lo = 3, hi = 7;
auto between = [&lo, &hi] (int i){
return lo <= i && i <= hi;

};
auto i = std::find_if(v.begin(), v.end(), between);

lo = 0; hi = 42;
auto j = std::find_if(v.begin(), v.end(), between);

Capturing - The Risks

» When capturing something by-ref, lifetime issues must be
considered

Capturing - The Risks

» When capturing something by-ref, lifetime issues must be
considered

» E.g. returning a lambda from a function or passing it as a
callback to something that will stay alive after the current
scope

Capturing - Interesting Use-Case - ScopeGuard

» Finally having finally in C4++

Capturing - Interesting Use-Case - ScopeGuard

» Finally having finally in C4++

> We all know and love std: :unique_ptr, std: :shared_ptr,
std: :lock_guard and more RAIl tools from the standard
library

Capturing - Interesting Use-Case - ScopeGuard

» Finally having finally in C4++

> We all know and love std: :unique_ptr, std: :shared_ptr,
std: :lock_guard and more RAIl tools from the standard
library

» Occasionally, we write a class of our own to handle a specific
resource / usage in our application

Capturing - Interesting Use-Case - ScopeGuard

» Finally having finally in C4++

> We all know and love std: :unique_ptr, std: :shared_ptr,
std: :lock_guard and more RAIl tools from the standard
library

» Occasionally, we write a class of our own to handle a specific
resource / usage in our application

» The c-tor creates the resource / takes ownership

Capturing - Interesting Use-Case - ScopeGuard

» Finally having finally in C4++

> We all know and love std: :unique_ptr, std: :shared_ptr,
std: :lock_guard and more RAIl tools from the standard
library

» Occasionally, we write a class of our own to handle a specific
resource / usage in our application

» The c-tor creates the resource / takes ownership
» The d-tor destroys it / does any cleanup task needed

Capturing - Interesting Use-Case - ScopeGuard

» Finally having finally in C4++
> We all know and love std: :unique_ptr, std: :shared_ptr,
std: :lock_guard and more RAIl tools from the standard
library
» Occasionally, we write a class of our own to handle a specific
resource / usage in our application
» The c-tor creates the resource / takes ownership
» The d-tor destroys it / does any cleanup task needed
» Sometimes we want an ad-hoc tool for use only once in the
code

ScopeGuard - Usage

//

_variant_t vtProp;
auto hres =
message.Get(L”Message”, 0, &vtProp, 0, 0);

o 0N

ScopeGuard - Usage

//

_variant_t vtProp;
auto hres =
message.Get (L , 0, &vtProp, 0, 0);

CComSafeArray<uint8_t> arr;
arr.Attach(vtProp.parray);

O ~NOOC1T A WN

ScopeGuard - Usage

//

_variant_t vtProp;
auto hres =
message.Get(L”Message”, 0, &vtProp, 0, 0);

CComSafeArray<uint8_t> arr;
arr.Attach(vtProp.parray);
// DON'T FORGET TO DETACH AT THE END

LW ~NOOTL A~ WN

—

ScopeGuard - Usage

//

_variant_t vtProp;
auto hres =
message.Get (L , 0, &vtProp, 0, 0);

CComSafeArray<uint8_t> arr;
arr.Attach(vtProp.parray);

9 // DON'T FORGET TO DETACH AT THE END

10 const auto detach = makeScopeGuard([&arr] ()
11 arr.Detach();
12 b

O ~NOOC1T A WN

ScopeGuard - Usage

//
2
3 _variant_t vtProp;
4 auto hres =
5 message.Get (L"Message", 0, &vtProp, 0, 0);
6
7 CComSafeArray<uint8_t> arr;
8 arr.Attach(vtProp.parray);
9 // DON'T FORGET TO DETACH AT THE END
10 const auto detach = makeScopeGuard([&arr] () {
11 arr.Detach();
12 B
13

14 // Continue working; no fear of throwing exceptions
15

ScopeGuard - Another Example

m_inFWUpdate = true;

ScopeGuard - Another Example

m_inFWUpdate = true;
2 // MUST RESET THE FLAG AT THE END
3

ScopeGuard - Another Example

m_inFWUpdate = true;
// MUST RESET THE FLAG AT THE END

const auto flagGuard = gsl::finally([this] {
m_inFWUpdate = false;

SO WN

s

ScopeGuard - Another Example

m_inFWUpdate = true;
// MUST RESET THE FLAG AT THE END

const auto flagGuard = gsl::finally([this] {
m_inFWUpdate = false;
B

// Continue working; status will auto-reset itself

O ~NO O WN

Outline

The Type of a Lambda (and more)

The Type of Lambda

» We saved the lambda function till now by using auto

The Type of Lambda

» We saved the lambda function till now by using auto

» Lambda function is a compiler-generated type that is different
for each lambda function

The Type of Lambda

» We saved the lambda function till now by using auto

» Lambda function is a compiler-generated type that is different
for each lambda function

» Lambda that captures nothing can be “converted” to a
function pointer with the matching signature

The Type of Lambda

» We saved the lambda function till now by using auto

» Lambda function is a compiler-generated type that is different
for each lambda function

» Lambda that captures nothing can be “converted” to a
function pointer with the matching signature

» Every lambda can be saved inside std: :function object
with the matching signature

The Type of Lambda

» We saved the lambda function till now by using auto

» Lambda function is a compiler-generated type that is different
for each lambda function

» Lambda that captures nothing can be “converted” to a
function pointer with the matching signature

» Every lambda can be saved inside std: :function object
with the matching signature

std::function<void(int)> f = [](int i){
2 std::cout << i <K< ;
3 3}

The Type of Lambda

» We saved the lambda function till now by using auto

» Lambda function is a compiler-generated type that is different
for each lambda function

» Lambda that captures nothing can be “converted” to a
function pointer with the matching signature

» Every lambda can be saved inside std: :function object
with the matching signature

std::function<void(int)> f = [](int i){
2 std::cout << i <K< ;
3 3}

P> Less recommended due to a non-trivial overhead, but
sometimes we have no better choice

Specifiers

> mutable allows mutating variables captured by-value

Specifiers

> mutable allows mutating variables captured by-value

P> noexcept can be used if desired

Specifiers

> mutable allows mutating variables captured by-value
P> noexcept can be used if desired

» Both are coming after the ()

Outline

C++14

Capturing Improvements

» With C+411, capturing move-only types wasn't great

Capturing Improvements

> With C++11, capturing move-only types wasn't great
» Could be captured by-ref, but this isn't always desired

Capturing Improvements

> With C++11, capturing move-only types wasn't great
» Could be captured by-ref, but this isn't always desired

» With C+414, init-capture allowed, enabling usage of
move-only types but many other use-cases

Capturing Improvements - Syntax

» [p = std::move(ptr)] - moves ptr in and call it p

Capturing Improvements - Syntax

» [p = std::move(ptr)] - moves ptr in and call it p
» This allows “renaming” in general:

Capturing Improvements - Syntax

» [p = std::move(ptr)] - moves ptr in and call it p
» This allows “renaming” in general:
> [x = y] - copy y in but call it x inside

Capturing Improvements - Syntax

» [p = std::move(ptr)] - moves ptr in and call it p
» This allows “renaming” in general:

> [x = y] - copy y in but call it x inside
» [&r = p] - user the name r inside as a reference to p

Capturing Improvements - Syntax

» [p = std::move(ptr)] - moves ptr in and call it p
» This allows “renaming” in general:

> [x = y] - copy y in but call it x inside
» [&r = p] - user the name r inside as a reference to p

» Or even introducing new variables:

Capturing Improvements - Syntax

» [p = std::move(ptr)] - moves ptr in and call it p
» This allows “renaming” in general:

> [x = y] - copy y in but call it x inside
» [&r = p] - user the name r inside as a reference to p

» Or even introducing new variables:

» [answer = 42] - create a variable answer inside with type
int and initialize it to 42

Capturing Improvements - Syntax

» [p = std::move(ptr)] - moves ptr in and call it p
» This allows “renaming” in general:

> [x = y] - copy y in but call it x inside
» [&r = p] - user the name r inside as a reference to p

» Or even introducing new variables:
» [answer = 42] - create a variable answer inside with type
int and initialize it to 42

» ScopeGuard became more usable

Return Type Deduction Improvements

» Return type deduction works with multiple return statements
too

Return Type Deduction Improvements

» Return type deduction works with multiple return statements
too

» As long as all of them agree on the same type!

Return Type Deduction Improvements

» Return type deduction works with multiple return statements
too

» As long as all of them agree on the same type!

» Explicitly stating the return type is still usefult if:

Return Type Deduction Improvements

» Return type deduction works with multiple return statements
too
» As long as all of them agree on the same type!

» Explicitly stating the return type is still usefult if:
» The deduced type isn't what we want (e.g. adding ref)

Return Type Deduction Improvements

» Return type deduction works with multiple return statements
too
» As long as all of them agree on the same type!

» Explicitly stating the return type is still usefult if:

» The deduced type isn't what we want (e.g. adding ref)
» Deduction fails for differences between return statments (e.g.
int vs. double, MyObj* vs. nullptr)

Return Type Deduction Improvements

» Return type deduction works with multiple return statements
too

» As long as all of them agree on the same type!

» Explicitly stating the return type is still usefult if:

» The deduced type isn't what we want (e.g. adding ref)
» Deduction fails for differences between return statments (e.g.
int vs. double, MyObj* vs. nullptr)

» BTW, regular functions got this feature too for C++14; you
can use just auto for the return type

Return Type Deduction Improvements

» Return type deduction works with multiple return statements
too

» As long as all of them agree on the same type!

» Explicitly stating the return type is still usefult if:
» The deduced type isn't what we want (e.g. adding ref)
» Deduction fails for differences between return statments (e.g.
int vs. double, MyObj* vs. nullptr)
» BTW, regular functions got this feature too for C++14; you
can use just auto for the return type
» (but have the function body available for the compiler
wherever used, just like template)

Generic Lambda

> With C+414, it's possible to use auto for a parameter

Generic Lambda

> With C+414, it's possible to use auto for a parameter

» It means the resulted lambda object gets a templated
operator ()

Generic Lambda

> With C+414, it's possible to use auto for a parameter

» It means the resulted lambda object gets a templated
operator ()

» Shorter to write :)

Generic Lambda

> With C+414, it's possible to use auto for a parameter

» It means the resulted lambda object gets a templated
operator ()

» Shorter to write :)

» auto size = [](const auto& m){ return m.size();

};

Generic Lambda

> With C+414, it's possible to use auto for a parameter

» It means the resulted lambda object gets a templated
operator ()

» Shorter to write :)

» auto size = [](const auto& m){ return m.size();
s

» Very useful as a visitor for std: :variant (C++17)

Generic Lambda

> With C+414, it's possible to use auto for a parameter
» It means the resulted lambda object gets a templated

operator ()

» Shorter to write :)

» auto size = [](const auto& m){ return m.size();
}s

» Very useful as a visitor for std: :variant (C++17)

» The conversion to function pointer and std: :function still
works!

Outline

C++17

Another Specifier

> constexpr can be specified

Another Specifier

> constexpr can be specified

» Automatically constexpr even if not specified as long as it
staisfies all the requirements!

Another Specifier

> constexpr can be specified
» Automatically constexpr even if not specified as long as it
staisfies all the requirements!

» For constexpr in general, watching “constexpr ALL the
things" is recommended

Another Specifier

> constexpr can be specified
» Automatically constexpr even if not specified as long as it
staisfies all the requirements!

» For constexpr in general, watching “constexpr ALL the
things" is recommended
» (by Jason Turner and Ben Deane; CppCon2017 and more)

Another Capturing Option

> Now it's possible to capture the current object by-value

Another Capturing Option

> Now it's possible to capture the current object by-value
» [*this]

Outline

C+-+20 (draft)

Additional Capturing Syntax

> [=, this] used to be an error, as capturing this is already
done by =

Additional Capturing Syntax

> [=, this] used to be an error, as capturing this is already
done by =

» C+4++17 added [=, *this] option

Additional Capturing Syntax

> [=, this] used to be an error, as capturing this is already

done by =

» C+4++17 added [=, *this] option

» So people may want to mention explicitly that they do want
this by-ref

Additional Capturing Syntax

> [=, this] used to be an error, as capturing this is already
done by =

» C+4++17 added [=, *this] option

» So people may want to mention explicitly that they do want
this by-ref

» C+420 allows [=, this] syntax

Easier Access to Generic Lambda Template

» Or: improving diversity and equality :)

Easier Access to Generic Lambda Template

» Or: improving diversity and equality :)
» [] <tparams> () { %}

Easier Access to Generic Lambda Template

» Or: improving diversity and equality :)
» [] <tparams> () { %}

» auto glambda = []<class T>(T a, auto&& b) {
return a < b; };

Default-Constructible, Usabe in Template Arguments

» Today, for using a lambda function as a comparator for a
container, we have to do the following:

Default-Constructible, Usabe in Template Arguments

» Today, for using a lambda function as a comparator for a
container, we have to do the following:

auto comp = []J(const auto& 1, const auto& r) {
2 return 1.key < r.key;
3 X

Default-Constructible, Usabe in Template Arguments

» Today, for using a lambda function as a comparator for a
container, we have to do the following:

auto comp = []J(const auto& 1, const auto& r) {
return 1l.key < r.key;

};

kR wwN

std::set<My0Obj, decltype(comp)> set(comp);

Default-Constructible, Usabe in Template Arguments

» Today, for using a lambda function as a comparator for a
container, we have to do the following:

auto comp = []J(const auto& 1, const auto& r) {

2 return 1.key < r.key;

3 1}

4

5 std::set<My0Obj, decltype(comp)> set(comp);

» C++17 removed the need of repeating (auto-deduction of
template arguments for templated classes)

Default-Constructible, Usabe in Template Arguments

» Today, for using a lambda function as a comparator for a
container, we have to do the following:

auto comp = []J(const auto& 1, const auto& r) {
return 1l.key < r.key;

2

3 3}

4

5 std::set<My0Obj, decltype(comp)> set(comp);

» C++17 removed the need of repeating (auto-deduction of
template arguments for templated classes)

» It's still inconvenient (C++ Weekly - Ep 94 - Lambdas as
Comparators - Jason Turner):

Default-Constructible, Usabe in Template Arguments

» Today, for using a lambda function as a comparator for a
container, we have to do the following:

auto comp = []J(const auto& 1, const auto& r) {
2 return 1.key < r.key;
3 1}
4
5 std::set<My0Obj, decltype(comp)> set(comp);
» C++17 removed the need of repeating (auto-deduction of

template arguments for templated classes)

» It's still inconvenient (C++ Weekly - Ep 94 - Lambdas as
Comparators - Jason Turner):

auto comp = [](const auto& 1, const auto& r) {

2 return 1l.key < r.key;
3 %

Default-Constructible, Usabe in Template Arguments

» Today, for using a lambda function as a comparator for a
container, we have to do the following:

auto comp = []J(const auto& 1, const auto& r) {
return 1l.key < r.key;

};

kR wwN

std::set<My0Obj, decltype(comp)> set(comp);

v

C++417 removed the need of repeating (auto-deduction of
template arguments for templated classes)

» It's still inconvenient (C++ Weekly - Ep 94 - Lambdas as
Comparators - Jason Turner):

auto comp = [](const auto& 1, const auto& r) {
return l.key < r.key;

};

W

std::set set ({{MyObj{ }}, comp);

C+-+20-Style

> With C+420 we can do just:

C+-+20-Style

> With C+420 we can do just:

auto comp = []J(const auto& 1, const auto& r) {
2 return 1l.key < r.key;
3 X

C+-+20-Style

> With C+420 we can do just:

auto comp = []J(const auto& 1, const auto& r) {
return 1l.key < r.key;

};

b wN

std::set<My0Obj, decltype(comp)> set;

C+-+20-Style

> With C+420 we can do just:

auto comp = []J(const auto& 1, const auto& r) {
return 1l.key < r.key;

};

b wN

std::set<My0Obj, decltype(comp)> set;

» [t's default desctructible!

C+-+20-Style

> With C+420 we can do just:

auto comp = []J(const auto& 1, const auto& r) {
2 return 1l.key < r.key;
3}
4
5 std::set<My0Obj, decltype(comp)> set;

» [t's default desctructible!

> We could even write the lambda directly inside the decltype
but this is just ugly..

Outline

Summary

Summary

» We have seen the various options of lambda function

Summary

» We have seen the various options of lambda function

P Learned the syntax

Summary

» We have seen the various options of lambda function
P Learned the syntax

» Learned the evolution of it over the standard versions

Summary

» We have seen the various options of lambda function
P Learned the syntax
» Learned the evolution of it over the standard versions

> Saw a few interesting usages

Summary

We have seen the various options of lambda function
Learned the syntax
Learned the evolution of it over the standard versions

Saw a few interesting usages

vVvyYVvyyVvyy

Please don't overuse!

	Lambda Function - What?
	Motivation
	The Solution - Lambda Expression
	The Missing Part
	Capturing
	The Type of a Lambda (and more)
	C++14
	C++17
	C++20 (draft)
	Summary

