
1 ©2019 Check Point Software Technologies Ltd.

Yossi Moalem

The C/C++ Memory Model

2 ©2019 Check Point Software Technologies Ltd.

• Part 1 (Boring): some theory

• Part 2 (Cool): consequences

• Part 3 (Important): applications

̶ Part 3.14 (If time permits): a touch on atomics

Agenda

3 ©2019 Check Point Software Technologies Ltd.

Some Theory

4 ©2019 Check Point Software Technologies Ltd.

The computer we think we program for

CPU
RAM

And then came Gordon Moore

5 ©2019 Check Point Software Technologies Ltd.

The number of transistors in a dense integrated circuit doubles every two
years

̶ CPU became much faster, very fast

̶ Memory speed did not advance so fast

Moore’s Law

6 ©2019 Check Point Software Technologies Ltd.

• L1 Cache:
̶ 2-4 cycles

̶ 32K, for instruction, 32K for Data

̶ Per core, shared between HW threads

• L2 Cache
̶ 15-18 cycles

̶ 256K, shared for instructions and data

̶ Per CPU

• L3 Cache
̶ 30-40 cycles

̶ 32M, shared for instructions and data

̶ Per Machine

• Main Memory
̶ Over 100 cycles (150-200 and maybe more!)

Cache Hierarchy, The numbers

Faster
Larger

7 ©2019 Check Point Software Technologies Ltd.

The computer we are actually programming for

CPU Core

RAM

CPU Core

CPU Core

CPU Core

L1I

L2

L2

L3

T1

T2

T1

T2

T1

T2

T1

T2

L1D

L1I

L1D

L1I

L1D

L1I

L1D

s
b

s
b

s
b

s
b

Not to scale!

8 ©2019 Check Point Software Technologies Ltd.

One picture worth 1000 words
One animation worth 100 pictures

CPU

L1

L2

L3

Main memory

To scale!

9 ©2019 Check Point Software Technologies Ltd.

• Swapping in/out should be efficient

• Minimize maintenance

• Non-consecutive

• Locality

Cache: Requirements

10 ©2019 Check Point Software Technologies Ltd.

• Fixed size block of memory

• Smallest cache-able unit

• When memory required, the whole cache line is swapped in

Cache Line

Main Memory

Cache

11 ©2019 Check Point Software Technologies Ltd.

Cache lookup

Cache

Main Memory
(Cache lines)

12 ©2019 Check Point Software Technologies Ltd.

• Compiler can rearrange the code

̶ Rearrange/remove memory access

̶ Reuse location

• To use the HW better:

̶ Provide better locality

̶ Reduce stale cycles

• Maintain observable state, from the same thread POV

Compiler has freedom!

13 ©2019 Check Point Software Technologies Ltd.

Compiler reordering

14 ©2019 Check Point Software Technologies Ltd.

• Introduced for MMIO

• Reorder non-volatile and volatile is permitted

• Every access to the variable will be restricted

Volatile

15 ©2019 Check Point Software Technologies Ltd.

Compiler Barrier

16 ©2019 Check Point Software Technologies Ltd.

• Fetch instruction

• Push to instruction queue

• Wait for the operands

• Dispatched (even before earlier instructions)

• Executes

• Write result to queue

• When its time comes (older results have been written), write result to
register file

HW has freedom too!

17 ©2019 Check Point Software Technologies Ltd.

• Data availability order, rather then instruction order.

• Reduce memory access wait time

• Several functional units

Out of Order Execution

18 ©2019 Check Point Software Technologies Ltd.

Assume finished and answer initialized to 0

CPU Reordering

<Core #2 >
 while (! finished) { ; }
 cout << answer;

<Core #1>
answer = 42;
finished = 1; May reorder May reorder

19 ©2019 Check Point Software Technologies Ltd.

• Several instructions execute in parallel

• Threads needs to communicate

• Reads and writes order reasoning

Instruction Reordering

20 ©2019 Check Point Software Technologies Ltd.

• The set of allowed reorders

̶ LoadLoad

̶ LoadStore

̶ StoreStore

̶ StoreLoad

• C++ did not define memory model until C++ 11

Language Memory Model

21 ©2019 Check Point Software Technologies Ltd.

• Ordering with respect to memory access

• The toolchain will issue the correct fence for this architecture

• If such fence is unavailable, a stronger fence is issued

̶ Full fence

̶ One way fence

• Synchronization mechanisms include the required fence

Memory Fence (memory barrier, machine barrier)

22 ©2019 Check Point Software Technologies Ltd.

CPU Reordering, Example Revised

<CPU #2>
 while (! finished.load(memory_order_acquire)) { ;}
cout << answer;

<CPU #1>
answer = 42;
finished.store(1, memory_order_release);

Synchronize
with

Sequenced
before

Sequenced
before

Happens
before

23 ©2019 Check Point Software Technologies Ltd.

• Sequential consistency (SC): Defined in 1979 by Leslie Lamport: “the
result of any execution is the same as if the reads and writes occurred in
some order, and the operations of each individual processor appear in
this sequence in the order specified by its program”

• Data race: simultaneously accessing object by two threads, and at least
one thread is a writer.

• Simultaneously: without happens-before ordering.

SC-DRF

Appearing to execute the program you wrote, as long as you
didn’t write a data race.

24 ©2019 Check Point Software Technologies Ltd.

data = 42;

t1.store (1);

Transitivity

 if (t1.load())

 t2.store(1);

 if (t2.load())

// data == 42 ??

Thread #1 Thread #2 Thread #3

25 ©2019 Check Point Software Technologies Ltd.

Bottom line:

• Compiler and CPU may reorder instructions
• SC-DRF
• Fences restricts the reordering

• Memory is divided into Cache Lines
• This is the smallest cacheable unit
• Cache line can be placed in a restricted number of “cache slots”

26 ©2019 Check Point Software Technologies Ltd.

Consequences

27 ©2019 Check Point Software Technologies Ltd.

First seen at http://preshing.com

The Idea

<Thread 1>
 x = 1;
// compiler barrier here
rY = y;

<Thread 2>
 y = 1;
// compiler barrier here
 rX = x;

x, y, rX and rY initialized to zero

28 ©2019 Check Point Software Technologies Ltd.

The Idea, cont’d
 <Main thread>
Initialize all semaphores
Spawns two threads
Do forever:
 Initialize to zero
 Post on start semaphores
 Wait on end semaphore
 Wait on end semaphore
 Check if both, rX and rY are zero

<Thread 1>
Do forever:
 Wait on start semaphore #1

 x = 1;
 Compiler Barrier

 rY = y;
 Post on end semaphore

<Thread 2>
Do forever:
 Wait on start semaphore #2

 y= 1;
 Compiler Barrier

 rX = x;
 Post on end semaphore

29 ©2019 Check Point Software Technologies Ltd.

Compiled with no optimization:

Results:

Compiled with O3

30 ©2019 Check Point Software Technologies Ltd.

• Replacing the compiler barrier with memory fence

• Demonstrating this would be kind’a boring….

Solution

 x = 1;
atomic_thread_fence(memory_order_seq_cst);
rY = y;

31 ©2019 Check Point Software Technologies Ltd.

• CPU never sees its own data out of order

• Setting affinity just for this may be a huge overkill

Another approach: CPU affinity

32 ©2019 Check Point Software Technologies Ltd.

Count the amount of odds

in a matrix

How hard can it be…

Matrix traversal

33 ©2019 Check Point Software Technologies Ltd.

Row by row Vs. col by col

34 ©2019 Check Point Software Technologies Ltd.

Is Col by col the worst?

35 ©2019 Check Point Software Technologies Ltd.

Reducing matrix size

36 ©2019 Check Point Software Technologies Ltd.

• Should be easy

̶ Just make sure we do not have races

Multi-Core

37 ©2019 Check Point Software Technologies Ltd.

int counter[NumOfThreads];

for(int p = 0; p < NumOfThreads; ++p)

 pool.run(count(p));

pool.join();

odds = 0;

for(int p = 0; p < NumOfThreads; ++p)

 odds += counter[p];

Solution Attempt #1
auto count = [] (int threadNum) {

 counter[threadNum] = 0;

 int chunkSize = DIM/(threadNum + 1);

 int myStart = threadNum * chunkSize;

 int myEnd = min(myStart+chunkSize, DIM);

 for(int row = myStart; row < myEnd; ++row)

 for(int col = 0; col < DIM; ++col)

 if(matrix[row*DIM + col] % 2 != 0)

 ++counter[threadNum];

 });

38 ©2019 Check Point Software Technologies Ltd.

Solution Attempt #1: Results

39 ©2019 Check Point Software Technologies Ltd.

And in my run

40 ©2019 Check Point Software Technologies Ltd.

41 ©2019 Check Point Software Technologies Ltd.

int counter[NumOfThreads];

for(int p = 0; p < NumOfThreads; ++p)

 pool.run(count(p));

pool.join();

odds = 0;

for(int p = 0; p < NumOfThreads; ++p)

 odds += counter[p];

Solution Attempt #1
auto count = [] (int threadNum) {

 counter[threadNum] = 0;
 int chunkSize = DIM/(threadNum + 1);
 int myStart = threadNum * chunkSize;
 int myEnd = min(myStart+chunkSize, DIM);

 int count = 0;

 for(int row = myStart; row < myEnd; ++row)

 for(int col = 0; col < DIM; ++col)

 if(matrix[row*DIM + col] % 2 != 0)

 ++count; //++counter[threadNum];

 couter[threadNum] = count;

 });

42 ©2019 Check Point Software Technologies Ltd.

• Yes…

Could this make a difference??

43 ©2019 Check Point Software Technologies Ltd.

Again, in my run

44 ©2019 Check Point Software Technologies Ltd.

• Heap allocation, globals, statics

̶ Even from different translation units

• False sharing requires

̶ Several cores accessing the same cache line

̶ Frequently

̶ At least one is writer

Not only arrays

45 ©2019 Check Point Software Technologies Ltd.

Applications

46 ©2019 Check Point Software Technologies Ltd.

• Characteristics, not existence

• Attempt to maximize cache hits

• All levels of cache hierarchy

• Can be out-performed by cache aware

Cache Oblivious Algorithms

47 ©2019 Check Point Software Technologies Ltd.

• Analyzing using big O notation

• Idealized cache model

̶ Ignore cache hierarchy

̶ Ignore replacing policies

̶ Ignore associativity

Analyzing Memory Utilization

48 ©2019 Check Point Software Technologies Ltd.

Search a sequence of numbers for the highest number, which is less than X

• Data is searched many time

• Ignore preparation time

How should we store the sequence??

Example: Search

49 ©2019 Check Point Software Technologies Ltd.

• log(n) comparisons

• Given the distance, assume that they will require memory access

• log(n)-log(B) memory accesses are required

Attempt #1: Binary Search

50 ©2019 Check Point Software Technologies Ltd.

• Set B to our cache-line size

• We will require log B (N) steps

• Each node will be loaded in one cache line

• O(log (N) / log(B)) memory accesses

• But….

̶ We need to know B

Attempt #2: B-Tree

51 ©2019 Check Point Software Technologies Ltd.

• Full description and analysis is outside the scope

• Set a fully balanced tree

• Recursively divide it to sub-trees

• Each sub-tree is copied to sequential memory

• Use this to search

Van Emde Boas

52 ©2019 Check Point Software Technologies Ltd.

53 ©2019 Check Point Software Technologies Ltd.

13

4

2 6

17

15

1 3

19

9 5 18 14 16 20

13 4 5 1 3 6 9 2 17

54 ©2019 Check Point Software Technologies Ltd.

• Each section is of size B or less

̶ 2 memory accesses per section

• Tree height is log(n)

• Section height between log(B) to log(B)/2

• Max sections we will visit is log(N)/(log(B)/2)

• This will require 4(log(N)/log(B)) memory accesses

Van Emde Boas, intuitive analysis

55 ©2019 Check Point Software Technologies Ltd.

class Object {
 int _pos[2];
 int _speed;
 Model _model;
 const char _name[NAME_SIZE];
 ….
 int _foo;
};

Data Oriented Design

Consider the following class:

56 ©2019 Check Point Software Technologies Ltd.

void Object::update(int time)

{

 float f = sqrt(

 _pos[0] + (time* _speed) +

 _pos[1] + (time * _speed)) ;

 _foo += f;

}

What is the most expensive operation?

1. Load _pos, cache miss, 200 cycles
2. Load speed, same cache line, 3 cycles
3. Multiply and add, twice 5 cycles, twice
4. Square root, 30 cycles
5. Load _foo, cache miss, 200 cycles
6. Add result to _foo , 1 cycle

Total: 450 cycles

_pos

_speed

_model

_name

_foo

Memory

57 ©2019 Check Point Software Technologies Ltd.

• 50 out of 450 cycles are real work

Compiler’s domain is the 50 cycles

Not very much…

Can the compiler help?

58 ©2019 Check Point Software Technologies Ltd.

class Object {

 int _pos[2];

 int _speed;

 int _foo;

 Model _model;

 const char _name[NAME_SIZE];

 ….

};

Back to the Example

59 ©2019 Check Point Software Technologies Ltd.

void Object::update(int time)

{

 float f = sqrt(

 _pos[0] + (time* _speed) +

 _pos[1] + (time * _speed)) ;

 _foo += f;

}

The new cost:

1. Load _pos, cache miss, 200 cycles
2. Load speed, same cache line, 3 cycles
3. Multiply and add, twice 5 cycles, twice
4. Square root, 30 cycles
5. Load _foo, cache miss, 200 cycles
5. Load _foo, 5 cycles
6. Add result to _foo , 1 cycle

Total: 250 cycles

_pos

_speed

_foo

_model

_name

Memory

60 ©2019 Check Point Software Technologies Ltd.

• Make continuous, tightly packed, chunks of memory that will be used
consecutively.

• Re-group fields according to their usage

• When it is needed, and the transformation on them

DoD in one sentence

61 ©2019 Check Point Software Technologies Ltd.

Regroup the data

Can we do better?

class Object {

 Model _model;

 const char _name[NAME_SIZE];

 ….

};

class ObjectPosition{

 float _pos[2];

 float _speed;

 int _foo;

};

for (auto & object : objects) {

 object.update(time);

}

62 ©2019 Check Point Software Technologies Ltd.

• Single cache line, multiple objects

• Shared cost

• On average, fetching will cost us about 40 cycles

• Total cost ~90 cycles

The new cost

63 ©2019 Check Point Software Technologies Ltd.

• Load the key

• Load the object selectively

Container Searching for a key/condition

Key1 Key 2 Key 3 Key 4 Key 5 Key 6 Key 7 Key 8 Key 9 Key 10

64 ©2019 Check Point Software Technologies Ltd.

• shapes is likely to contain:

 square, circle, polygon, square, text, apple rectangle….

Polymorphism

for (Shape * currentShape : shapes) {
 currentShape->draw();
}

65 ©2019 Check Point Software Technologies Ltd.

Polymorphism, Resolution

for (Circle* currentCircle : circles) {
 currentCircle->draw();
 }

for (Square* currentSquare : squares) {
 currentSquare->draw();
 }

66 ©2019 Check Point Software Technologies Ltd.

A touch on atomics

If time permits:

67 ©2019 Check Point Software Technologies Ltd.

The Pattern

Singleton* Singleton ::instance () {
 if (_instance == nullptr) {
 std::lock_guard<std::mutex> lock(_mutex);
 if (_instance == nullptr) {
 _instance = new Singleton();
 }
 }
 return _instance;
}

Allocate memory
Call C’tor
Assign

68 ©2019 Check Point Software Technologies Ltd.

Attempt #1: Adding temporary

Singleton * Singleton ::instance () {
 if (_instance == nullptr) {
 std::lock_guard<std::mutex> lock(_mutex);
 if (_instance == nullptr) {
 Singleton * tmp = new Singleton();
 _instance = tmp;
 }
 }
 return _instance;
}

Optimize out the temporary.
Back to square 1.

69 ©2019 Check Point Software Technologies Ltd.

• Change tmp to larger scope, say static

̶ Compiler can still detect this

• Define tmp as extern

̶ Can still detect this

̶ Or, place construction after both

• Define helper on other translation unit

̶ Compiler must assume it can throw

̶ No inlining

̶ Link-time inlining kills this attempt

Attempt #2: Outsmart the compiler

70 ©2019 Check Point Software Technologies Ltd.

• Qualify tmp and _instance as volatile

̶ All side effects of one volatile must be completed before addressing the other

Attempt #3: Volatile

Singleton * Singleton ::instance () {
 if (_instance == nullptr) {
 std::lock_guard<std::mutex> lock(_mutex);
 if (_instance == nullptr) {
 Singleton * volatile tmp = new Singleton();
 _instance = tmp; // static Singleton * volatile
 }
 }
 return _instance;
}

71 ©2019 Check Point Software Technologies Ltd.

Lets inline a constructor:

Attempt #3: Volatile, cont’d

Singleton * Singleton ::instance () {
 if (_instance == nullptr) {
 std::lock_guard<std::mutex> lock(_mutex);
 if (_instance == nullptr) {
 Singleton * volatile tmp = new Singleton();
 tmp->x = 4 //from the c’tor
 _instance = tmp;
 }
 }
 return _instance;
}

This new instruction
may be reordered

72 ©2019 Check Point Software Technologies Ltd.

Trying to outsmart the compiler is a bad idea

Conclusion

73 ©2019 Check Point Software Technologies Ltd.

Attempt #4: Compiler barrier

Singleton * Singleton::instance () {
 if (_instance == nullptr) {
 std::lock_guard<std::mutex> lock(_mutex);
 if (_instance == nullptr) {
 Singleton * tmp = new Singleton();
 // Compiler Barrier here
 _instance = tmp;
 }
 }
 return _instance;
}

74 ©2019 Check Point Software Technologies Ltd.

Game Over!

What about CPU Re-Ordering

75 ©2019 Check Point Software Technologies Ltd.

Singleton * Singleton::instance() {

 if (_instance == nullptr) {

 std::lock_guard<std::mutex> lock(_mutex);

 if (_instance == nullptr) {

 Singleton * tmp = new Singleton;

 std::atomic_thread_fence(std::memory_order_seq_sct);

 _instance = tmp;

 }

 }

 return _instance ;

}

Attempt #5: Memory Barrier

Non atomic
assignment

76 ©2019 Check Point Software Technologies Ltd.

Singleton * Singleton ::instance() {

 Singleton * tmp = _instance.load();

 if (tmp == nullptr) {

 std::lock_guard<std::mutex> lock(_mutex);

 tmp = _instance.load();

 if (tmp == nullptr) {

 tmp = new Singleton;

 _instance = tmp;

 }

 }

 return tmp ;

}

Attempt #5: atomic

77 ©2019 Check Point Software Technologies Ltd.

• But uses sequential consistency

• Can be expensive

• Can we do better?

This works!

78 ©2019 Check Point Software Technologies Ltd.

Singleton * Singleton ::instance() {
 Singleton * tmp = _instance.load(std::memory_order_acquire);
 if (tmp == nullptr) {
 std::lock_guard<std::mutex> lock(_mutex);
 tmp = _instance.load(memory_order_relaxed);
 if (tmp == nullptr) {
 tmp = new Singleton ;
 _instance.store(tmp, memory_order_release);
 }
 }
 return tmp;
}

Attempt #6: acquire-release

79 ©2019 Check Point Software Technologies Ltd.

Singleton * Singleton::instance() {

 Singleton* tmp = _instance.load(memory_order_relaxed);

 if (tmp == nullptr) {

 Singleton * newInstance = new Singleton ;

 if (! (_instance.compare_exchange_strong(tmp, newInstance,

 memory_order_relaxed))) {

 delete newInstance;

 }

 }

 return _instance.load(memory_order_relaxed);

}

Attempt #7: do we need the lock?

80 ©2019 Check Point Software Technologies Ltd.

C++ 11 states:

Back to the sketching board

If control enters the declaration concurrently while the variable is
being initialized, the concurrent execution will wait for completion
of the initialization.

Singleton & Singleton::instance() {
 static Singleton instance;
 return instance;
}

So, the final answer…

