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Yossi Moalem 

The C/C++ Memory Model 
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• Part 1 (Boring): some theory 

• Part 2 (Cool): consequences 

• Part 3 (Important): applications 

̶ Part 3.14 (If time permits): a touch on atomics 

Agenda 
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Some Theory 
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The computer we think we program for  

CPU 
RAM 

And then came Gordon Moore 
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The number of transistors in a dense integrated circuit doubles every two 
years 

̶ CPU became much faster, very fast 

̶ Memory speed did not advance so fast 

Moore’s Law  
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• L1 Cache: 
̶ 2-4 cycles 

̶ 32K, for instruction, 32K for Data 

̶ Per core, shared between HW threads 

• L2 Cache 
̶ 15-18 cycles 

̶ 256K, shared for instructions and data 

̶ Per CPU 

• L3 Cache 
̶ 30-40 cycles 

̶ 32M, shared for instructions and data 

̶ Per Machine 

• Main Memory 
̶ Over 100 cycles (150-200 and maybe more!) 

Cache Hierarchy, The numbers 

Faster 
Larger 
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The computer we are actually programming for  
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One picture worth 1000 words 
One animation worth 100 pictures 

CPU 

L1 

L2 

L3 

Main memory 

To scale! 
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• Swapping in/out should be efficient 

• Minimize maintenance  

• Non-consecutive 

• Locality 

Cache: Requirements 
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• Fixed size block of memory 

• Smallest cache-able unit 

 

 

 

 

• When memory required, the whole cache line is swapped in 

 

Cache Line 

Main Memory 

Cache 
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Cache lookup 

Cache 

Main Memory 
(Cache lines) 
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• Compiler can rearrange the code  

̶ Rearrange/remove memory access 

̶ Reuse location  

• To use the HW better: 

̶ Provide better locality 

̶ Reduce stale cycles 

• Maintain observable state, from the same thread POV 

Compiler has freedom! 
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Compiler reordering 
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• Introduced for MMIO 

 

• Reorder non-volatile and volatile is permitted 

 

• Every access to the variable will be restricted 

Volatile 
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Compiler Barrier 
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• Fetch instruction 

• Push to instruction queue 

• Wait for the operands 

• Dispatched (even before earlier instructions) 

• Executes 

• Write result to queue 

• When its time comes (older results have been written), write result to 
register file  

 

HW has freedom too! 
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• Data availability order, rather then instruction order. 

• Reduce memory access wait time 

• Several functional units 

Out of Order Execution 
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Assume finished and answer initialized to 0 

CPU Reordering 

<Core #2 > 
 while (! finished) { ; } 
 cout << answer; 

<Core #1>  
answer = 42; 
finished = 1; May reorder May reorder 
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• Several instructions execute in parallel 

• Threads needs to communicate  

• Reads and writes order reasoning 

 

Instruction Reordering 
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• The set of allowed reorders 

̶ LoadLoad 

̶ LoadStore 

̶ StoreStore 

̶ StoreLoad 

• C++ did not define memory model until C++ 11 

Language Memory Model 
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• Ordering with respect to memory access 

• The toolchain will issue the correct fence for this architecture 

• If such fence is unavailable, a stronger fence is issued 

̶ Full fence 

̶ One way fence 

• Synchronization mechanisms include the required fence 

 

Memory Fence (memory barrier, machine barrier)  
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CPU Reordering, Example Revised 

<CPU #2> 
 while ( ! finished.load(memory_order_acquire)) { ;} 
cout << answer; 

<CPU #1>  
answer = 42; 
finished.store(1, memory_order_release); 

Synchronize 
with 

Sequenced 
before 

Sequenced 
before 

Happens 
before 
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• Sequential consistency (SC): Defined in 1979 by Leslie Lamport: “the 
result of any execution is the same as if the reads and writes occurred in 
some order, and the operations of each individual processor appear in 
this sequence in the order specified by its program” 

• Data race: simultaneously accessing object by two threads, and at least 
one thread is a writer. 

• Simultaneously: without happens-before ordering. 

 

SC-DRF 

Appearing to execute the program you wrote, as long as you 
didn’t write a data race. 
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data = 42; 

t1.store (1); 

Transitivity 

 if (t1.load() ) 

     t2.store(1); 

 if (t2.load() ) 

// data == 42 ?? 

Thread #1 Thread #2 Thread #3 
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Bottom line:  

• Compiler and CPU may reorder instructions 
• SC-DRF 
• Fences restricts the reordering 

• Memory is divided into Cache Lines 
• This is the smallest cacheable unit 
• Cache line can be placed in a restricted number of “cache slots” 
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Consequences 
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First seen at  http://preshing.com 

The Idea 

<Thread 1> 
 x = 1; 
// compiler barrier here 
rY = y; 

<Thread 2> 
 y = 1; 
// compiler barrier here 
 rX = x; 

x, y, rX and rY initialized to zero 
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The Idea, cont’d 
 <Main thread> 
Initialize all semaphores 
Spawns two threads 
Do forever: 
      Initialize to zero 
      Post on start semaphores 
      Wait on end semaphore 
      Wait on end semaphore 
      Check if both, rX and rY are zero 

<Thread 1> 
Do forever: 
    Wait on start semaphore #1 

    x = 1; 
    Compiler Barrier  

    rY = y; 
   Post on end semaphore  

<Thread 2> 
Do forever: 
    Wait on start semaphore #2 

    y= 1; 
    Compiler Barrier  

    rX = x; 
   Post on end semaphore  
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Compiled with no optimization: 

 

Results: 

Compiled with O3 
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• Replacing the compiler barrier with memory fence 
 

 

 

 

• Demonstrating this would be kind’a boring…. 

 

Solution 

 x = 1; 
atomic_thread_fence(memory_order_seq_cst); 
rY = y;  
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• CPU never sees its own data out of order 

• Setting affinity just for this may be a huge overkill 

Another approach: CPU affinity 
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Count the amount of odds  

in a matrix 

 

How hard can it be… 

Matrix traversal 
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Row by row Vs. col by col 
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Is Col by col the worst? 
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Reducing matrix size 
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• Should be easy 

̶ Just make sure we do not have races 

 

 

 

Multi-Core 
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int counter[NumOfThreads]; 

 

for( int p = 0; p < NumOfThreads; ++p ) 

          pool.run( count(p) ); 

 

pool.join(); 

odds = 0; 

for( int p = 0; p < NumOfThreads; ++p ) 

  odds += counter[p]; 

 

Solution Attempt  #1 
auto count = [] (int threadNum) { 

    counter[threadNum] = 0; 

    int chunkSize = DIM/(threadNum + 1); 

     int myStart = threadNum * chunkSize; 

     int myEnd = min( myStart+chunkSize, DIM ); 

    for( int row = myStart; row < myEnd; ++row ) 

      for( int col = 0; col < DIM; ++col ) 

        if( matrix[row*DIM + col] % 2 != 0 ) 

          ++counter[threadNum]; 

  } ); 
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Solution Attempt  #1: Results 
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And in my run 
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int counter[NumOfThreads]; 

 

for( int p = 0; p < NumOfThreads; ++p ) 

          pool.run( count(p) ); 

 

pool.join(); 

odds = 0; 

for( int p = 0; p < NumOfThreads; ++p ) 

  odds += counter[p]; 

 

Solution Attempt  #1 
auto count =  [] (int threadNum) { 

    counter[threadNum] = 0; 
    int chunkSize = DIM/(threadNum + 1); 
     int myStart = threadNum * chunkSize; 
     int myEnd = min( myStart+chunkSize, DIM ); 

    int count = 0; 

    for( int row = myStart; row < myEnd; ++row ) 

      for( int col = 0; col < DIM; ++col ) 

        if( matrix[row*DIM + col] % 2 != 0 ) 

          ++count; //++counter[threadNum]; 

      couter[threadNum] = count; 

  } ); 
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• Yes… 

Could this make a difference?? 
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Again, in my run 



44 ©2019 Check Point Software Technologies Ltd.  

 

• Heap allocation, globals, statics 

̶ Even from different translation units 

 

• False sharing requires 

̶ Several cores accessing the same cache line 

̶ Frequently 

̶ At least one is writer 

Not only arrays 
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Applications 
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• Characteristics, not existence 

• Attempt to maximize cache hits 

• All levels of cache hierarchy 

• Can be out-performed by cache aware  

Cache Oblivious Algorithms 
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• Analyzing using big O notation 

• Idealized cache model 

̶ Ignore cache hierarchy 

̶ Ignore replacing policies  

̶ Ignore associativity  

 

 

Analyzing Memory Utilization 
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Search a sequence of numbers for the highest number, which is less than X 

• Data is searched many time 

• Ignore preparation time 

 

How should we store the sequence??  

Example: Search 
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• log(n) comparisons 

• Given the distance, assume that they will require memory access 

 

• log(n)-log(B) memory accesses are required 

Attempt #1: Binary Search 
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• Set B to our cache-line size 

• We will require log B (N) steps 

• Each node will be loaded in one cache line 

• O(log (N) / log(B)) memory accesses 

 

• But…. 

̶ We need to know B 

Attempt #2: B-Tree 
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• Full description and analysis is outside the scope 

• Set a fully balanced tree 

• Recursively divide it to sub-trees 

• Each sub-tree is copied to sequential memory 

• Use this to search 

Van Emde Boas  
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• Each section is of size B or less 

̶ 2 memory accesses per section 

• Tree height is log(n) 

• Section height between log(B) to log(B)/2 

• Max sections we will visit is log(N)/(log(B)/2) 

• This will require 4(log(N)/log(B)) memory accesses 

 

Van Emde Boas, intuitive analysis 
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class Object { 
   int _pos[2]; 
   int _speed; 
   Model  _model; 
   const char  _name[NAME_SIZE]; 
   …. 
   int _foo; 
}; 

Data Oriented Design 

Consider the following class: 
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void Object::update( int time)  

{ 

  float f = sqrt(   

  _pos[0] + (time* _speed) +  

  _pos[1] + (time * _speed ) ) ; 

  _foo +=  f; 

} 

What is the most expensive operation? 

1. Load _pos, cache miss, 200 cycles 
2. Load speed, same cache line, 3 cycles 
3. Multiply and add, twice 5 cycles, twice 
4. Square root, 30 cycles 
5. Load _foo, cache miss, 200 cycles 
6. Add result to _foo , 1 cycle 
 

Total: 450 cycles 

_pos 

_speed 

_model 

_name 

_foo 

Memory 
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• 50 out of 450 cycles are real work 

 

Compiler’s domain is the 50 cycles 

Not very much… 

Can the compiler help? 
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class Object { 

   int _pos[2]; 

   int _speed; 

   int _foo; 

   Model  _model; 

   const char  _name[NAME_SIZE]; 

   …. 

}; 

 

Back to the Example 
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void Object::update( int time)  

{ 

  float f = sqrt(   

  _pos[0] + (time* _speed) +  

  _pos[1] + (time * _speed ) ) ; 

  _foo +=  f; 

} 

The new cost: 

1. Load _pos, cache miss, 200 cycles 
2. Load speed, same cache line, 3 cycles 
3. Multiply and add, twice 5 cycles, twice 
4. Square root, 30 cycles 
5. Load _foo, cache miss, 200  cycles  
5.   Load _foo, 5 cycles 
6.   Add result to _foo , 1 cycle 
 

Total: 250 cycles 

_pos 

_speed 

_foo 

_model 

_name 

Memory 
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• Make continuous, tightly packed, chunks of memory that will be used 
consecutively. 

 

• Re-group fields according to their usage 

• When it is needed, and the transformation on them 

 

 

DoD in one sentence 
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Regroup the data     

Can we do better? 

class Object { 

   Model  _model; 

   const char  _name[NAME_SIZE]; 

   …. 

}; 

class ObjectPosition{ 

   float _pos[2]; 

   float _speed; 

   int _foo; 

}; 

for ( auto & object : objects ) { 

           object.update(time); 

} 
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• Single cache line, multiple objects   

• Shared cost 

• On average, fetching will cost us about 40 cycles 

• Total cost ~90 cycles 

The new cost 
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• Load the key 

• Load the object selectively 

Container Searching for a key/condition 

Key1 Key 2 Key 3 Key 4 Key 5 Key 6 Key 7 Key 8 Key 9 Key 10 
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• shapes is likely to contain: 

 square, circle, polygon, square, text, apple rectangle…. 

 

Polymorphism 

for (Shape * currentShape : shapes) { 
        currentShape->draw(); 
} 
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Polymorphism, Resolution 

for (Circle* currentCircle : circles) { 
  currentCircle->draw(); 
  } 
 
for (Square* currentSquare : squares) { 
  currentSquare->draw(); 
 } 
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A touch on atomics 

If time permits:  
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The Pattern 

Singleton* Singleton ::instance () {  
  if ( _instance  == nullptr ) { 
       std::lock_guard<std::mutex> lock(_mutex); 
       if (_instance == nullptr) { 
               _instance = new Singleton(); 
         } 
    } 
  return _instance; 
} 

Allocate memory 
Call C’tor 
Assign  
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Attempt #1: Adding temporary 

Singleton * Singleton ::instance () {  
  if ( _instance == nullptr ) { 
       std::lock_guard<std::mutex> lock(_mutex); 
        if (_instance == nullptr) { 
              Singleton * tmp = new Singleton(); 
               _instance = tmp; 
         } 
    } 
  return _instance; 
} 

Optimize out the temporary. 
Back to square 1. 
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• Change tmp to larger scope, say static 

̶ Compiler can still detect this 

• Define tmp as extern 

̶ Can still detect this 

̶ Or, place construction after both 

• Define helper on other translation unit 

̶ Compiler must assume it can throw 

̶ No inlining 

̶ Link-time inlining kills this attempt 

 

Attempt #2: Outsmart the compiler 
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• Qualify tmp and _instance as volatile 

̶ All side effects of one volatile must be completed before addressing the other 

Attempt #3: Volatile 

Singleton * Singleton ::instance () {  
  if ( _instance == nullptr ) { 
      std::lock_guard<std::mutex> lock(_mutex); 
      if ( _instance == nullptr ) { 
               Singleton * volatile tmp = new Singleton(); 
               _instance = tmp;  // static Singleton * volatile  
         } 
    } 
  return _instance; 
} 
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Lets inline a constructor: 

Attempt #3: Volatile, cont’d 

Singleton * Singleton ::instance () {  
  if ( _instance == nullptr ) { 
      std::lock_guard<std::mutex> lock(_mutex); 
       if ( _instance == nullptr ) { 
              Singleton * volatile tmp = new Singleton(); 
               tmp->x = 4 //from the c’tor 
               _instance = tmp;   
         } 
    } 
  return _instance; 
} 

This new instruction 
may be reordered 
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Trying to outsmart the compiler is a bad idea 

Conclusion 
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Attempt #4: Compiler barrier 

Singleton * Singleton::instance () {  
  if (_instance == nullptr) { 
       std::lock_guard<std::mutex> lock(_mutex); 
       if (_instance == nullptr) { 
              Singleton * tmp = new Singleton(); 
               // Compiler Barrier here 
               _instance = tmp; 
         } 
    } 
  return _instance; 
} 
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Game Over! 

What about CPU Re-Ordering 
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Singleton * Singleton::instance() {  

       if (_instance == nullptr) {  

             std::lock_guard<std::mutex> lock(_mutex); 

             if (_instance == nullptr) {  

                    Singleton * tmp = new Singleton;   

                    std::atomic_thread_fence(std::memory_order_seq_sct);  

                   _instance = tmp;  

              }  

        }  

       return _instance ;  

} 

Attempt #5: Memory Barrier 

Non atomic 
assignment 
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Singleton * Singleton ::instance() {  

      Singleton * tmp = _instance.load(); 

       if (tmp == nullptr) {  

             std::lock_guard<std::mutex> lock(_mutex); 

             tmp = _instance.load(); 

             if (tmp == nullptr) {  

      tmp = new Singleton; 

     _instance = tmp;   

            }  

        }  

       return tmp ;  

} 

Attempt #5: atomic 
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• But uses sequential consistency 

• Can be expensive 

 

• Can we do better? 

This works! 



78 ©2019 Check Point Software Technologies Ltd.  

Singleton * Singleton ::instance() {  
       Singleton * tmp = _instance.load(std::memory_order_acquire); 
        if (tmp == nullptr) {  
             std::lock_guard<std::mutex> lock(_mutex);  
             tmp = _instance.load(memory_order_relaxed);  
             if (tmp == nullptr) {  
                   tmp = new Singleton ;  
                   _instance.store(tmp, memory_order_release);  
              }  
         }  
         return tmp;  
} 

Attempt #6: acquire-release 
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Singleton * Singleton::instance() { 

    Singleton* tmp = _instance.load(memory_order_relaxed); 

     if (tmp == nullptr) { 

         Singleton * newInstance = new Singleton ; 

          if (! (_instance.compare_exchange_strong( tmp, newInstance, 

                                                                          memory_order_relaxed) ) ) { 

                    delete newInstance;  

           } 

      } 

     return _instance.load(memory_order_relaxed); 

}  

Attempt #7: do we need the lock? 
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C++ 11 states: 
  

Back to the sketching board 

If control enters the declaration concurrently while the variable is 
being initialized, the concurrent execution will wait for completion 
of the initialization. 

Singleton & Singleton::instance() { 
    static Singleton instance; 
    return instance; 
} 

So, the final answer… 


