
High-Frequency Trading and Ultra Low
Latency Development Techniques

Nimrod Sapir
VP R&D
qSpark Ltd
nimrod.s@qspark.co
https://www.linkedin.com/in/nimrodsapir/

About me

▰ Been working in the HFT world for the last 5 years
▰ Worked on performance sensitive code for most of my

career (mostly for storage systems)

2

What am I going to talk about ?

▰ What is algo trading and high-frequency trading
▰ How does high-frequency trading impacts the market
▰ Main challenges in designing high-frequency trading

infrastructure
▰ Development techniques used in qSpark for the world

of high-frequency trading

3

▰ Algorithmic trading is any software which follow a predefined algorithm
to place trading instructions

▰ High-frequency trading is algorithmic trading characterized with very
high trading rate and short investment horizon.

▰ Usually, HFT algos do not try to predict overall long term market
behaviour (i.e. will it go up or down)

▰ HFT algorithm profitability is dependent on its ability to perform trading
actions at critical points in time in an extremely
latency-sensitive manner. 4

What is algorithmic trading/High Frequency trading

▰ Although there is no official statistics, HFT is estimated to account to
at least 50% of the US equity (shares) trading volume

▰ Notice that trading volume does not equal capital
▰ The market share of HFT has declined, as did profitability, since the

peak year (2009)

5

High-frequency trading market share (estimation)

6

High frequency trading market share (estimation)

7

High frequency trading market share (estimation)

VIX = Volatility
index. Reflects the
level of anxiety in the
market.

8

High frequency trading market share

Dow Jones - 2017-2018

Is HFT good for the economy

▰ The questions on high-frequency trading impact on the
economy is old as HFT itself

▰ Many concerns rose around events such as the “flash
crash” of 2010

▰ Two known benefits of HFT are improvement of market
liquidity and narrowing of bid-offer spread

9

Market making

▰ Alice comes to the market and
would like to buy apples

▰ Apples are widely available in the
market, and there are always
buyers and sellers for them

▰ However, in order to get funds, she
need to sell the dragon fruits she
already has - which are a not very
popular! 10

Market making

▰ For actual trade to happen,
alice has to hold her order
open for 6 hours

▰ During this time she may
decide to give up (for
example, if price of apples
rises and she can’t use
those funds anymore) 11

Market making

▰ Carl, the trading algo is
willing to match Alice sell,
allowing her to buy apples
immediately

▰ Carl will wait until Bob
shows up and complete
the transaction

12

Market making

▰ Carl is considered a “market maker” as it enabled all the transactions,
which may not have happened without it.

▰ Although it seems that Carl did not earn from the transaction, in the
stock market it will actually earn rebates, which are percentages of
the fees the market took from each transaction.

▰ However, Carl also took a large risk, as there is no guarantee that a
buyer would come in, or that the price wouldn’t drop

13

Wait, but what is fast?

▰ The definition of HFT is very vague, and is constantly
changing

▰ At the beginning of the 21st century - a turnaround of
seconds would be considered “high frequency”

▰ Today, measurements is in microseconds

14

Wait, but what is fast?

▰ Light travels at 300 m/microsecond
▰ Forget about running your HFT rig

from your own data center or from
the cloud

▰ Also, the days of looking for the
closest location to the exchange are
over - you must reside inside the
exchange

15

Market fairness and network latency

▰ Due to strict market regulation, any
difference in external network latency
was evened out.

▰ Therefore, the real competition now
resides inside the traders' technological
stack

16

HFT trading infra - main challenges

17

...And they will lead you through the dark ot the widest, deepest river of
wealth ever known to man. You'll be shown your place on the riverbank,
and handed a bucket all your own. Slurp as much as you want, but try to
keep the racket of your slurping down….

- Kurt Vonnegut -

HFT trading infra - main challenges

▰ A good trading product has the right balance of profitable trading logic,
strong trading infrastructure and ability to quickly act and react to
market events

▰ Nothing will save you if your trading logic is misguided or if you are slow
to react - you live and die by your technical stack.

▰ Brand is non-existing - nothing prevents a smarter or quicker competitor
from taking over your “market share”

▰ All actions must comply to strict market regulation - bugs can easily
result in fines!

18

HFT trading infra - main challenges

19

▰ When talking about the competition in the
HFT world, you may imagine something like
this:

▰ Where a better reference may be something
like that:

HFT trading infra - main challenges

20

▰ The market behavior can never be accurately predicted, and you can
never be certain you are going in the right direction

▰ You need to be able to be extremely quick, not only to make a quick
transaction, but also to be able to revert quickly and cut your losses
when you are stuck with a bad trade

▰ You are never “fast enough”, every nanosecond you can cut of your
real-time flow will result in increase in profitability, and vice-versa

Main development approach in the qSpark trading infra

▰ End-to-end kernel bypass - system calls are too slow to use in real time

▰ Avoid context switching, queuing and data transfer between threads as
much as possible

▰ Deterministic, static code flow, which makes as many decisions as
possible in compilation time

▰ Minimize cache misses and wrong branch prediction

▰ Use custom-tailored data structures for specific use cases

▰ It is not faster if you haven’t measured it
21

Deterministic code flow and branching minimization

▰ Every run-time action has a performance penalty
▰ This is worsen by the fact in the case of branch

misprediction which means wasted CPU cycles
▰ Our design strives to create a deterministic, static flow,

which minimizes runtime branching by moving overhead to
compilation and initialization time

22

Deterministic code flow and branching minimization

23

Deterministic code flow and branching minimization

24

Compile time polymorphism using CRTP (Curiously
recurring template pattern)

class order

{

 virtual void place_order() {// Generic implementation...}

};

class specific_order : public order

{

 virtual void place_order() override

{// Specific implementation...}

};

class generic_order : public order {// No implementation};
25

Compile time polymorphism using CRTP (Curiously
recurring template pattern)

template <typename actual_type>

class order

{

void place_order() {static_cast<actual_type*>(this)->actual_place();}

void actual_place() { // Generic implementation… }

};

class specific_order : public order<specific_order>

{

 void actual_place() { // Specific implementation... }

};

class generic_order : public order<generic_order> {...}; 26

Compile time polymorphism using CRTP (Curiously
recurring template pattern)

template <class Execution, template <class A,

class B> class SocketHandlerType =

SocketHandlers::Tcp>

class BOE2 : public ExecutionProtocol<Execution,

SocketHandlerType, BOE2SequenceSourceType,

HeartbeatPolicy::Send>

{ ... }

27

Deterministic code flow and branching minimization

▰ There are many more techniques that can be used for achieving a
more deterministic code flow
▻ Maps with static values which can be evaluated in compile-time

▻ Compile-time configuration which replaces runtime flags with templated values

▻ Rearranging and/or statements order to move the more predictable values first

▻ Of course: constexpr all the things!

▰ Those techniques may have their own cost - mostly in compile-time,
but sometimes also in run-time (code bloat)

28

Warming up the cache

▰ Cache misses are one of the highest overhead for a low-latency
code.

▰ However, cache is very unpredictable - in multi-threaded
environment, there is a constant fight for the L3 cache

▰ This is worsen by the fact that the most critical flow is
sometimes extremely rare

29

Warming up the cache

30

▰ When trigger actually occurs,
the likelihood of the order
placement flow to be in the
cache is extremely low

▰ In addition, branch prediction
will assume order is never
sent

Warming up the cache

31

▰ Now the order placement
flow is way likelier to be in the
cache, and branch prediction
is more balanced

▰ Sounds simple, but there are
many complications

Warming up the cache

32

size_t g_total_value{};

void add_order_value(Order& order)
{
 g_total_value += order.get_amount() * order.get_price();
}

▰ There is a side-effect here, that we need to eliminate
▰ Naive approach, let's check if the order is warming only

Warming up the cache

33

size_t g_total_value{};

void add_order_value(Order& order)
{

if (!order.is_warming)
 g_total_value += order.get_amount() * order.get_price();
}

▰ We may have made things way worse!
▰ Multiple mispredictions can easily lead to warming actually adding

performance penalty

Warming up the cache

34

Warming up the cache

35

std::array<size_t, 2> g_total_value{};

void add_order_value(Order& order)
{
 g_total_value[order.is_warming] += order.get_amount() * order.get_price();
}

size_t get_order_value(){ return g_total_value[false] };

▰ The misprediction is eliminated
▰ Although we are “warming” the wrong entry in the array, locality makes

it very likely that we are actually warming both

Warming up the cache

▰ This is a very simple example, but actually avoiding all
side-effects in a complicated flow, without skipping any part of
the code, may be very challenging and may require major
redesign

▰ Any bug here would (and did) lead to serious issues
▰ Therefore, handle with care!
▰ That said, in the world of micro optimization, cache warming is

extremely efficient!
36

Tailor-made data structures for specific use cases

▰ Our code contains many data structures which are optimized
for specific use cases

▰ Some are extremely general and complex, some were made
specifically to resolve specific issues

▰ Here is one simple example: static_flat_map

37

Static Flat Map

38

void foo(std::map<...>& multi_threaded_small_map,

 lock_type& very_busy_lock)

{

 std::lock_guard<...> guard(very_busy_lock);

 for (auto& item : multi_threaded_small_map)

 {

 ...

 }

}

Static Flat Map

39

void foo(std::map<...>& multi_threaded_small_map,

 LockType& very_busy_lock)

{

 std::map<...> local_map;

 {

 std::lock_guard<...> guard(very_busy_lock);

local_map = multi_threaded_small_map;

 }

 for (auto& item : local_map) {...}

}

Static Flat Map

40

▻ Keep a sorted array
▻ Use binary search to find items
▻ Result: Much better performance

for copying and iterating over a
small map with known size

Static Flat Map

41

void foo(static_flat_map<...>& multi_threaded_small_map,

 lock_type& very_busy_lock)

{

 static_flat_map<...> local_map;

 {

 std::lock_guard<...> guard(very_busy_lock);

local_map = multi_threaded_small_map;

 }

 for (auto& item : local_map) {...}

}

Static Flat Map

std::map StaticFlatMap

Copy Time ~25usec 1usec>

42

Cons:

● Slow insert and remove
● Limited - size must be known in advance
● Not as good for large maps
● Not as good for large objects

Pros:

● Quick iteration
● Quick copy
● Quick lookup and edit
● Sequential and Static

Static Flat Map

43
https://github.com/DanielDubi/StaticFlatMap

Performance measurement

▰ When it comes to micro optimization and ultra low-latency, no
guarantee for “better average performance” is acceptable as-is.

▰ This means that each performance tweak has to be
continuously measured to show better performance.
▻ For example, -march and -mtune flags actually degraded performance in our

environment.

▰ However, testing the entire matrix of possible combinations is
practically impossible.

44

Performance measurement

45

Performance measurement

46

Performance measurement

▰ This performance measurement technique is nice, but it has a
lot of overhead

▰ The minimal overhead is simply taking a timestamp. For
example, in our environment:

▰ We have to separate lightweight real time counters from
intrusive measurements used in production 47

Timestamp accuracy 150 nanosecond 1 microsecond

Timestamp taking overhead 50 nanoseconds 10 nanoseconds

Disclaimer

▰ Premature optimization is the root of all evil (Donald Knuth)
▰ Premature micro-optimization is just plain stupid!
▰ The techniques described all have very serious costs, pitfalls

and trade offs
▰ Use with care, and only when micro-optimization is required

48

49

THANKS!
Any questions?

We are hiring C++ developers!

nimrod.s@qspark.co
https://www.linkedin.com/in/nimrodsapir/

Static Flat Map:
https://github.com/DanielDubi/StaticFlatMap

mailto:nimrod.s@qspark.co

