
Behind Enemy
Lines

Reverse
Engineering C++
in Modern Ages

Gal Zaban
@0xgalz

id;

● Gal Zaban.

● Security Researcher.

● I break yo’ stuff and sew for fun and non profit.

Agenda

● C++ from a Reverse Engineer Perspective.

● Picking a Target.

● Winning.

● Putting it into Practice.

● Have fun! :)

Binary Creation

Compiler, linker, etc.

 Code Binary

What if we would like to
reverse the process?

?
CodeBinary

Reverse Engineering

● Locals and Names don’t appear in the binary.

● Unless the code was compiled in debug mode.

● Optimizations usually make my head hurt.

● Static vs. Dynamic reversing.

● Hardware vs. Software.

● And many more.

What is it good for?

● Vulnerabilities
● Look for bugs in a code and exploit them.

● Understand the logic of code/ algorithm.
● Solve complex synchronization and bad optimizations.

The Reversed Steps

Decompiler + Human

Disassembler

 Binary Assembly Code

The Reversed Steps

Decompiler + Human

Disassembler

 Binary Assembly Code

Now, for a real example :)

What is the most effective way to
learn Reversing of C++ code?

Win Chicken Invader!

Win Chicken Invader!

But there is a problem..

I am TERRIBLE at this game…
The only way I can win

is….cheating!!11

Objective:
Win Chicken Invaders

By Patching the Game!

Let’s Start!

What do we want?

● Make the game easier.
○ Make the Chicken Boss easier.

● Learn reverse engineering C++ on the way.

What do we have?
● The binary of the game.
● A tool for disassembling the code.
● Our knowledge in C++.
● Some knowledge in reverse engineering (?).

Our tools for Reverse
Engineering

Tools we use- Disassemblers

Tools we use- Disassemblers
● IDA is our fav tool.

Assembly Basics (For MSVC Compiler)
● Important registers.

○ RAX/ EAX- stores the return value of functions.

○ RCX/ ECX- Stores pointers to objects.

● MSVC __fastcall calling convention uses Registers to pass Parameters
○ RCX, RDX, RDI, RSI, R8, R9

○ Anything else goes to the stack.

C++ Concepts in 60 seconds

Dynamic Object Creation

Dynamic Object Creation

Dynamic Object Creation

Basic Constructors
● How can we recognize a constructor in Assembly?

○ Sets the vtable to the object first bytes (4/ 8 - x86/x64)

○ Sets the object members in the other offsets

○ In case of inheritance, also calling the father’s constructor.

● As can be seen in the following example:

Basic Constructors
● How can we recognize a constructor in Assembly?

○ Sets the vtable to the object first bytes (4/ 8 - x86/x64)
○ Sets the object members in the other offsets

○ In case of inheritance, also calling the father’s constructor.

● As can be seen in the following example:

Basic Constructors
● How can we recognize a constructor in Assembly?

○ Sets the vtable to the object first bytes (4/ 8 - x86/x64)

○ Sets the object members in the other offsets
○ In case of inheritance, also calling the father’s constructor.

● As can be seen in the following example:

Virtual calls

Virtual calls

● The function that will be called will change on runtime

The virtual call

Virtual calls

● The function that will be called will change on runtime

Move the virtual
function to EAX

Virtual calls

● The function that will be called will change on runtime

Assignment of
the vtable to EDX

Virtual calls?

Assignment of
the vtable to EDX

Move the virtual
function to EAX

The virtual call

The Game

String in the Binary

● The string is in use by Controller::runLevel

Controller::runLevel - The SpaceShip
● In the beginning of this function we can see a shared_pointer of a spaceShip

object is being used.

● We are going to take a deeper look at this object.

“SpaceShip” Constructor

“SpaceShip” Constructor

“SpaceShip” Constructor

“SpaceShip” Vtable

“SpaceShip” Vtable

*

“SpaceShip” Vtable

*

● We can see the vtable contains both spaceShip function and GameObject
functions

● SpaceShip Inherits from GameObject

How does it look like from the
father side?

The “Game Object” constructor:: vtable
● The game object assigns its vtable to the first 8 bytes.

“Game Object” constructor:: members

“Game Object” constructor:: members

“Game Object” :: members

Assignment to the relevant
offset in the GameObject

“Game Object” :: members

The return values from
the function calls

Assignment to the relevant
offset int the Game object

“Game Object” :: Vtable
● If we return to our vtable these are the functions of the game object

“Game Object” :: Vtable

“Game Object” :: Vtable

● We can see the function “spaceShip::moveObj” is a pure virtual function in the
father game object.

REcap

REcap

After understanding those
Objects and Inheritance, it’s
time to go back to the code

flow

Controller::runLevel - assembly
● In the beginning we had the spaceship shared_pointer initialization.
● Afterwards we can find the following function call:

● We need to dig deeper into this function and understand what happens there.

fillWavesVector:: Emplace_Pack Wave objects

fillWavesVector:: Emplace_Pack Wave objects

● We can understand this function emplaces object in a vector.
● These object are unique pointers that represent every level named “wave”

fillWavesVector:: Emplace_Pack Wave objects

fillWavesVector:: Emplace_back WaveBoss objects
● When we look further we realize that the function emplaces more unique

pointers of objects like WaveBosses. Uhm not suspicious at all!

Controller::fillWavesVector Code

Controller::runLevel Using the Wave vector
● Before delving into understanding the waveBoss2 let’s check the usage of the

wave’s vector.

Controller::runLevel Using the Wave vector
● Before delving into understanding the waveBoss2 let’s check the usage of the

wave’s vector.
●

Controller::runLevel Using the Wave vector

Controller::runLevel- Virtual Call
● There are lots problem for reverse engineers when virtual call is been used.
● We can not easily know statically know which function is going to be called.

REcap
● After reading the assembly code, so far we figure out some of the parts!

●

Examine the virtual call on runtime

Examine the virtual call on runtime

Examine the virtual call on runtime

Virtual call to Wave3::createWave()
● The address of the the register EAX(contains the function address of the virtual

call) is Wave3::createWave()

Examine the virtual call on runtime

Examine the virtual call on runtime

Virtual call to Wave4::createWave()
● The next time we ran the code, EAX points to Wave4::createWave()

The virtual call - createWave()
● After running the code multiple times, we discovered the virtual call is to

createWave() of the relevant Wave object.
● All the wave objects are part of the vector explained before and being chosen

according to a counter

The virtual call - createWave()
● After running the code multiple times, we discovered the virtual call is to

createWave of the relevant Wave object.
● All the wave objects are part of the vector explained before and beeing chose

according to a counter
● When a boss appear in the game the “WaveBossX::createWave” function is being

called.

Examine WaveBoss2

WaveBoss2 constructor

● “WaveBoss” Inherits from ChickenBoss2

WaveBoss2 constructor

The Flow from here
● We can see that “WaveBoss2” Inherits from “ChickenBoss2”
● Our next step is to reverse engineer the code of ChickenBoss2 and figure out

what we would want to change in the boss.

Summary
● It is quite similar to the process we’ve done so far I’ll summarize the results.

Summary
● It is quite similar to the process we’ve done so far I’ll summarize the results.
● After reversing the “ChickenBoss2” object we figure out it also inherits from

“ChickenBase” that inherits from “GameObject”

WaveBoss2 ChickenBoss2 ChickenBase GameObject

Summary
● It is quite similar to the process we’ve done so far I’ll summarize the results.
● After reversing the “ChickenBoss2” object we figure out it also inherits from

“ChickenBase” that inherits from “GameObject”
● We also saw “GameObject” has other children like: regularChicken, spaceShip,

etc.
○ After reversing GameObject we saw one of its members seems like the amount of lives the

object has.

Summary
● It is quite similar to the process we’ve done so far I’ll summarize the results.
● After reversing the “ChickenBoss2” object we figure out it also inherits from

“ChickenBase” that inherits from “GameObject”
● We also saw “GameObject” has other children like: regularChicken, spaceShip,

etc.
○ After reversing GameObject we saw one of its members seems like the amount of lives the

object has.

○ Now we know what to change!

Changing the boss lives
● After the research we’ve done now we can understand what is this member:

● The amount of lives the boss has

Changing the boss lives

Changing the boss lives

Changing the boss lives

Changing the boss lives

Questions?

@0xgalz

Thank you for your time

@0xgalz

