
Understanding Lvalues and Rvalues

Copyright © 2019 by Dan Saks 1

Understanding

Lvalues and Rvalues

(corrected)

Dan Saks

Core C++ Conference

May, 2019

1

Saks & Associates

393 Leander Dr.

Springfield, OH 45504-4906 USA

+1-937-324-3601 (voice)

dan@dansaks.com

www.dansaks.com

These notes are Copyright © 2019 by Dan Saks.

2

Understanding Lvalues and Rvalues

Copyright © 2019 by Dan Saks 2

About Dan Saks

Dan Saks is the president of Saks & Associates, which offers

training and consulting in C and C++ and their use in developing

embedded systems.

Dan used to write the “Programming Pointers” column for

embedded.com online. He has also written columns for numerous

print publications including The C/C++ Users Journal, The C++

Report, Software Development, and Embedded Systems Design. With

Thomas Plum, he wrote C++ Programming Guidelines, which won a

1992 Computer Language Magazine Productivity Award.

Dan has taught C and C++ to thousands of programmers

worldwide. He has delivered hundreds of lectures, including a few

keynote addresses, at conferences such as the ACCU (Association of

C and C++ Users) Conference, CppCon: The C++ Conference, the

Embedded Systems Conference, and Meeting Embedded.

3

More About Dan Saks

Dan served as secretary of the ANSI and ISO C++ Standards

committees and as a member of the ANSI C Standards committee.

More recently, he contributed to the CERT Secure C Coding Standard

and the CERT Secure C++ Coding Standard.

Dan collaborated with Thomas Plum in writing and maintaining

Suite++™, the Plum Hall Validation Suite for C++, which tests C++

compilers for conformance with the international standard. Pre-

viously, he was a Senior Software Engineer for Fischer and Porter

(now ABB), where he designed languages and tools for distributed

process control. He also worked as a programmer with Sperry

Univac (now Unisys).

Dan earned an M.S.E. in Computer Science from the University of

Pennsylvania, and a B.S. with Highest Honors in Mathematics/

Information Science from Case Western Reserve University.

4

Understanding Lvalues and Rvalues

Copyright © 2019 by Dan Saks 3

Lvalues and Rvalues

� Lvalues and rvalues aren’t really language features.

� Rather, they’re semantic properties of expressions.

� Understanding them provides valuable insights into:

� the behavior of built-in operators

� the code generated to execute those operators

� the meaning of some otherwise cryptic compiler error

messages

� reference types

� overloaded operators

5

Lvalues and Rvalues Have Evolved

� In early C, the concepts of lvalue and rvalue were fairly simple.

� Early C++ added classes, const, and references.

� The concepts got more complicated.

� Modern C++ added rvalue references.

� The concepts got even more complicated.

� This talk explains the origins of the concepts of lvalue and rvalue,

from this historical perspective.

6

Understanding Lvalues and Rvalues

Copyright © 2019 by Dan Saks 4

Lvalues

� In The C Programming Language, Kernighan and Ritchie wrote:

� The name “lvalue” comes from the assignment expression

E1 = E2

in which the left operand E1must be an lvalue expression.

� An lvalue is an expression referring to an object.

� An object is a region of storage.

7

Lvalues and Rvalues

int n; // a definition for an integer object named n

~~~

n = 1;  // an assignment expression

� n is a sub-expression referring to an intobject.

� It’s an lvalue.

� 1 is a sub-expression not referring to an object.

� It’s an rvalue.

� An rvalue is simply an expression that’s not an lvalue.

8



Understanding Lvalues and Rvalues

Copyright © 2019 by Dan Saks 5

Lvalues and Rvalues

� Here’s a more complicated assignment:

x[i + 1] = abs(p->value);

� x[i + 1] is an expression. So is abs(p->value).

� For the assignment to be valid:

� The left operand must be an lvalue.

� It must refer to an object.

� The right operand can be either an lvalue or rvalue.

� It can be any expression.

9

A Look Under the Hood

� Why make this distinction between lvalues and rvalues?

� One answer:

� So that compilers can assume that rvalues don’t necessarily 

occupy storage.

� This offers considerable freedom in generating code for rvalue

expressions.

� Again, let’s consider the assignment in:

int n;  // a declaration for an integer object named n

~~~

n = 1; // an assignment expression

10

Understanding Lvalues and Rvalues

Copyright © 2019 by Dan Saks 6

Data Storage for Rvalues

� A compiler might represent 1 as named data storage initialized

with the value 1, as if 1were an lvalue.

� In assembly language, this might look something like:

one: ; a label for the following location

.word 1 ; allocate storage holding the value 1

� The compiler would generate code to copy from that initialized

storage to the storage allocated for n:

mov n, one ; copy the value at one to location n

11

Data Storage for Rvalues

� Some machines provide instructions with an immediate

operand:

� A source operand value can be part of an instruction.

� In assembly, this might look like:

mov n, #1 ; copy the value 1 to location n

� In this case:

� The rvalue 1never appears as an object in the data space.

� Rather, it appears as part of an instruction in the code space.

12

Understanding Lvalues and Rvalues

Copyright © 2019 by Dan Saks 7

Data Storage for Rvalues

� On some machines, the preferred way to put the value 1 into an

object might be to:

� clear the object,

� then increment it.

� In assembly, this might look like:

clr n ; set n to zero

inc n ; increment n, effectively setting it to 1

� Data representing the values 0 and 1 appear nowhere in either

the source or object code.

13

Must be an Lvalue == Can’t be an Rvalue

� Now, suppose you write:

1 = n; // obviously silly

� This is trying to change the value of the integer literal, 1.

� Of course, C (and C++) reject it as an error.

� But why, exactly?

� An assignment assigns a value to an object.

� Its left operand must be an lvalue.

� But 1 is not an lvalue; it’s an rvalue.

14

Understanding Lvalues and Rvalues

Copyright © 2019 by Dan Saks 8

Recap

� Every expression in C is either an lvalue or an rvalue.

� In general:

� An lvalue is an expression that refers to an object.

� An rvalue is simply any expression that isn’t an lvalue.

� Caveat: Although this is also true for non-class types in C++, it’s

not true for class types.

15

Literals

� Most literals are rvalues, including:

� numeric literals, such as 3 and 3.14159

� character literals, such as 'a'

� They don’t necessarily occupy data storage.

� However, character string literals, such as "xyzzy", are lvalues.

� They occupy data storage.

16

Understanding Lvalues and Rvalues

Copyright © 2019 by Dan Saks 9

Enumeration Constants

� When used in expressions, enumeration constants are also

rvalues:

enum color { red, green, blue };

color c;

~~~

c = green;      // OK: c is an lvalue

blue = green;   // error: blue is an rvalue

17

Lvalues Used as Rvalues

� An lvalue can appear on either side of an assignment, as in:

int m, n;

~~~

m = n; // OK: m and n are both lvalues

� Obviously, you can assign the value in n to the object designated

by m.

� This assignment uses the lvalue expression n as an rvalue.

� Officially, C++ performs an lvalue-to-rvalue conversion.

18

Understanding Lvalues and Rvalues

Copyright © 2019 by Dan Saks 10

Operands of Other Operators

� The concepts of lvalue and rvalue apply in all expressions.

� Not just assignment.

� For example, both operands of the binary +operator must be

expressions.

� Obviously, those expressions must have suitable types.

� But each operand can be either an lvalue or rvalue.

int x;

~~~

~~~ x + 2 ~~~   // OK: lvalue + rvalue

~~~ 2 + x ~~~   // OK: rvalue + lvalue

19

What About the Result?

� For built-in binary (non-assignment) operators such as +:

� The operands may be lvalues or rvalues.

� But what about the result?

� An expression such as m + nplaces its result:

� not in m,

� not in n,

� but rather in a compiler-generated temporary object, often a 

CPU register.

� Such temporary objects are rvalues.

20



Understanding Lvalues and Rvalues

Copyright © 2019 by Dan Saks 11

What About the Result?

� For example, this is (obviously?) an error:

m + 1 = n;      // error... but why?

� The +operator has higher precedence than =.

� Thus, the assignment expression is equivalent to:

(m + 1) = n;    // error... but why?

� It’s an error because m + 1 yields an rvalue.

21

Unary &

� &e is a valid expression only if e is an lvalue.

� Thus, &3 is an error.

� Again, 3does not refer to an object, so it’s not addressable.

� Although the operand must be an lvalue, the result is an rvalue.

� For example,

int n, *p;

~~~

p = &n; // OK: n is an lvalue

&n = p; // error: &n is an rvalue

22

Understanding Lvalues and Rvalues

Copyright © 2019 by Dan Saks 12

Unary *

� In contrast to unary &, unary * yields an lvalue.

� A pointer p can point to an object, so *p is an lvalue.

int a[N];

int *p = a;

char *s = NULL; // = nullptr in Modern C++

~~~

*p = 3;         // OK

*s = '\0';          // undefined behavior

� Note: Lvalue-ness is a compile-time property.

� *s is an lvalue even if s is null.

� If s is null, evaluating *s causes undefined behavior.

23

Unary *

� Again, the result of the *operator is an lvalue.

� However, its operand can be an rvalue.

� For example,

*(p + 1) = 4;   // OK

� Here, p + 1 is an rvalue, but *(p + 1) is an lvalue.

� The assignment stores the value 4 into the object referenced by 

*(p + 1).

24



Understanding Lvalues and Rvalues

Copyright © 2019 by Dan Saks 13

Data Storage for Expressions

� Conceptually, rvalues (of non-class type) don’t occupy data 

storage in the object program.

� In truth, some might.

� C and C++ insist that you program as if non-class rvalues don’t 

occupy storage.

� Conceptually, lvalues (of any type) occupy data storage.

� In truth, the optimizer might eliminate some of them.

� (But only when you won’t notice.)

� C and C++ let you assume that lvalues always do occupy storage.

25

Non-Modifiable Lvalues

� In fact, not all lvalues can appear on the left of an assignment.

� An lvalue is non-modifiable if it has a const-qualified type.

� For example,

char const name[] = "dan";

~~~

name[0] = 'D'; // error: name[0] is const

� name[0] is an lvalue, but it’s non-modifiable.

� Each element of a const array is itself const.

26

Understanding Lvalues and Rvalues

Copyright © 2019 by Dan Saks 14

Non-Modifiable Lvalues

� Lvalues and rvalues provide a vocabulary for describing subtle

behavioral differences…

� …such as between enumeration constants and const objects.

� For example, this MAX is a constant of an unnamed enumeration

type:

enum { MAX = 100 };

� Unscoped enumeration values implicitly convert to integer.

27

Non-Modifiable Lvalues

� When MAXappears in an expression, it yields an integer rvalue.

� Thus, you can’t assign to it:

MAX += 3; // error: MAX is an rvalue

� You can’t take its address, either:

int *p = &MAX; // error: again, MAX is an rvalue

28

Understanding Lvalues and Rvalues

Copyright © 2019 by Dan Saks 15

Non-Modifiable Lvalues

� On the other hand, this MAX is a const-qualified object:

int const MAX = 100;

� When it appears in an expression, it’s a non-modifiable lvalue.

� Thus, you still can’t assign to it.

MAX += 3; // error: MAX is non-modifiable

� However, you can take its address:

int const *p = &MAX; // OK: MAX is an lvalue

29

Recap

� This table summarizes the behavior of lvalues and rvalues (of

non-class type):

30

can take the address of can assign to

lvalue yes yes

non-modifiable lvalue yes no

(non-class) rvalue no no

Understanding Lvalues and Rvalues

Copyright © 2019 by Dan Saks 16

Const Objects

� A const object is addressable.

� The compiler may generate storage to hold the const object’s

value.

� The compiler might find that the program never needs storage

for a particular const object.

� It often does.

� In that case, the compiler need not allocate storage for that

object.

� This behavior for const objects is analogous to the behavior for

inline functions.

31

Reference Types

� The concepts of lvalues and rvalues help explain C++ reference

types.

� References provide an alternative to pointers as a way of

associating names with objects.

� C++ libraries often use references instead of pointers as function

parameters and return types.

32

Understanding Lvalues and Rvalues

Copyright © 2019 by Dan Saks 17

Reference Types

� Consider the following code:

int i; // define i as an integer object

~~~

int &ri = i;    // define ri as a "reference to int"

� The last line above:

� defines riwith type “reference to int”, and

� initializes ri to refer to i.

� Hence, reference ri is an alias for i.

33

Reference Types

� A reference is essentially a pointer that’s automatically 

dereferenced each time it’s used.

� You can rewrite most, if not all, code that uses a reference as code 

that uses a const pointer, as in:

� A reference acts like a const pointer that’s dereferenced (has a * 

in front of it) whenever you touch it.

� A reference yields an lvalue.

34

reference notation equivalent pointer notation

int &ri = i; int *const cpi = &i;

ri = 4; *cpi = 4;

int j = ri + 2; int j = *cpi + 2;



Understanding Lvalues and Rvalues

Copyright © 2019 by Dan Saks 18

Initializing vs. Assigning

� Initializing a reference associates the reference with an object.

� Initializing a reference is also known as binding.

� Assigning to a reference stores through the reference and into 

the referenced object.

� For instance,

int &ri = i;    // binds reference to object

ri = 3;         // assigns to referenced object

35

References and Overloaded Operators

� What good are references?

� Why not just use pointers?

� References can provide friendlier function interfaces.

� More specifically, C++ has references so that overloaded 

operators can look just like built-in operators…

36



Understanding Lvalues and Rvalues

Copyright © 2019 by Dan Saks 19

References and Overloaded Operators

enum month {

Jan, Feb, Mar, ~~~, Dec, month_end

};

typedef enum month month;

~~~

for (month m = Jan; m <= Dec; ++m) {

~~~

}

� This code compiles and executes as expected in C.

� However, it doesn’t compile in C++…

37

References and Overloaded Operators

� In C++, the built-in ++won’t accept an operand of enumeration 

type.

� You need to overload ++ for month.

� Let’s try it without references…

38



Understanding Lvalues and Rvalues

Copyright © 2019 by Dan Saks 20

References and Overloaded Operators

void operator++(month x) {          // pass by value

x = static_cast<month>(x + 1);

}

� Using this definition, ++m compiles, but doesn’t increment m.

� It increments a copy of m in parameter x.

� Also, this implementation lets you apply ++ to an rvalue, as in:

++Apr;      // compiles, but shouldn't

� A proper overloaded ++ should behave like the built-in ++, as in:

++42;       // compile error: can't increment an rvalue

39

References and Overloaded Operators

� We need a ++ that passes in a month it can modify:

void operator++(month *x) {         // pass by address?

*x = static_cast<month>(*x + 1);

}

� In fact, this function definition won’t compile.

� You can’t overload an operator with a parameter of pointer 

type.

� Even if the definition compiled, it wouldn’t work like a built-in ++:

++m;        // looks right but doesn't compile

++&m;       // looks wrong and doesn't compile

40



Understanding Lvalues and Rvalues

Copyright © 2019 by Dan Saks 21

References and Overloaded Operators

� We really need a ++ that can modify a monthobject…

� … but without passing explicitly by address:

void operator++(month &x) {         // pass by reference

x = static_cast<month>(x + 1);

}

� Using this definition:

++m;       // compiles, increments m, and looks right

� As a bonus, this ++operator won’t accept an rvalue:

++Apr;     // compile error

41

References and Overloaded Operators

� Actually, a proper prefix ++doesn’t return void.

� It returns the incremented object by reference:

month &operator++(month &x) {       // non-void return

return x = static_cast<month>(x + 1);

}

� This enables overloaded ++ to act even more like a built-in 

operator:

int j = ++i;    // OK

month n = ++m;  // OK

42



Understanding Lvalues and Rvalues

Copyright © 2019 by Dan Saks 22

“Reference to Const” Parameters

� Just as you can have “pointer to const" parameters…

� You can also have “reference to const” parameters:

R f(T const &t);

� A “reference to const” parameter will accept an argument that’s 

either const or non-const.

� In contrast, a reference (to non-const) parameter will accept only 

a non-const argument.

� When it appears in an expression, a “reference to const” yields a 

non-modifiable lvalue.

43

“Reference to Const” Parameters

� For the most part, a function declared as:

R f(T const &t);    // by "reference to const"

has the same outward behavior as a function declared as:

R f(T t);           // by value

� That is, the calls look and act very much the same…

44



Understanding Lvalues and Rvalues

Copyright © 2019 by Dan Saks 23

“Reference to Const” Parameters

� Either way you declare f, you write the argument expression the 

same way:

T x;

~~~

f(x); // by value, or by "reference to const"?

� Either way, calling f can’t alter the actual argument, x:

� By value: fhas access only to a copy of x, not x itself.

� By “reference to const”: f’s parameter is declared to be non-

modifiable.

45

Why Use “Reference to Const”?

� Why pass by “reference to const” instead of by value?

� Passing by “reference to const” might be much more efficient

than passing by value.

� It depends on the cost to make a copy.

46

Understanding Lvalues and Rvalues

Copyright © 2019 by Dan Saks 24

References and Temporaries

� A “pointer to T” can point only to an lvalue of type T.

� Similarly, a “reference to T” binds only to an lvalue of type T.

� For example, these are both compile errors:

int *pi = &3; // can't apply & to 3

int &ri = 3; // can't bind this, either

� These are also compile errors:

int i;

~~~

double *pd = &i;    // can't convert pointers

double &rd = i;     // can't bind this, either

47

References and Temporaries

� There’s an exception to the rule that a reference must bind to an 

lvalue of the referenced type:

� A “reference to const T” can bind to an expression x that’s not 

an lvalue of type T…

� … if there’s a conversion from x’s type to T.

� In this case, the compiler creates a temporary object to hold a 

copy of x converted to T.

� This is so the reference has something to bind to.

48



Understanding Lvalues and Rvalues

Copyright © 2019 by Dan Saks 25

References and Temporaries

� For example, consider:

int const &ri = 3;

� When program execution reaches this declaration, the program:

1. creates a temporary int to hold the 3, and

2. binds ri to the temporary.

� When execution leaves the scope containing ri, the program:

3. destroys the temporary.

49

References and Temporaries

� Given:

double const &rd = ri;  // ri from the previous slide

� When program execution reaches this declaration, the program:

1. converts the value of ri from int to double,

2. creates a temporary double to hold the converted result, and

3. binds rd to the temporary.

� Again, when execution leaves the scope containing rd, the 

program:

4. destroys the temporary.

50



Understanding Lvalues and Rvalues

Copyright © 2019 by Dan Saks 26

References and Temporaries

� This special behavior enables passing by “reference to const” to 

consistently have the same outward behavior as passing by value.

� For example, compare this with the code on the next slide:

long double x;

void f(long double ld);  // by value

~~~

f(x); // passes a copy of x

f(1); // passes a copy of...

// ...1 converted to long double

51

References and Temporaries

� This is the same example, except it uses a “reference to const”

parameter in place of a value parameter:

long double x;

void f(long double const &ld); // by reference to const

~~~

f(x);   // passes a reference to x

f(1);   // passes a reference to a temporary...

// ...containing 1 converted to long double

� Either way, the function calls behave the same.

52



Understanding Lvalues and Rvalues

Copyright © 2019 by Dan Saks 27

Mimicking Built-In Operators

� Recall the behavior of the built-in +operator:

� The operands may be lvalues or rvalues.

� The result is always an rvalue.

� How do you declare an overloaded operator with the same 

behavior?

� Consider a rudimentary (character) string class with + as a 

concatenation operator…

53

Mimicking Built-In Operators

� You can declare operator + as a non-member, as in:

class string {

public:

string(string const &);

string(char const *);   // converting constructor

string &operator=(string const &);

~~~

};

string operator+(string const &lo, string const &ro);

54

Understanding Lvalues and Rvalues

Copyright © 2019 by Dan Saks 28

Mimicking Built-In Operators

string operator+(string const &lo, string const &ro);

� Parameters lo and ro accept arguments that are either lvalues or

rvalues:

string s = "hello";

string t = "world";

~~~

s = s + ", " + t;

� The compiler applies the converting constructor implicitly:

s = s + string(", ") + t;   // lvalue + rvalue + lvalue

55

Mimicking Built-In Operators

string operator+(string const &lo, string const &ro);

� The function returns its result by value.

� Calling this operator + yields an rvalue:

string *p = &(s + t);   // error: can't take the address

56



Understanding Lvalues and Rvalues

Copyright © 2019 by Dan Saks 29

References

� C++11 introduced another kind of reference.

� What C++03 calls “references”, C++11 calls “lvalue references”.

� This distinguishes them from C++11’s new “rvalue references”.

� Except for the name change, lvalue references in C++11 behave 

just like references in C++03.

57

Rvalue References

� Whereas an lvalue reference declaration uses the &operator, an 

rvalue reference uses the &&operator.

� For example, this declares ri to be an “rvalue reference to int”:

int &&ri = 10;

� You can use rvalue references as function parameters and return 

types, as in:

double &&f(int &&ri);

� You can also have an “rvalue reference to const”, as in:

int const &&rci = 20;

58



Understanding Lvalues and Rvalues

Copyright © 2019 by Dan Saks 30

Rvalue References

� Rvalue references bind only to rvalues.

� This is true even for “rvalue reference to const”.

� For example,

int n = 10;

int &&ri = n;       // error: n is an lvalue

int const &&rj = n; // error: n is an lvalue

59

Move Operations

� Modern C++ uses rvalue references to implement move 

operations that can avoid unnecessary copying:

class string {

public:

// copy operations

string(string const &);         // constructor

string &operator=(string const &);     // assignment

// move operations

string(string &&) noexcept;     // constructor

string &operator=(string &&) noexcept; // assignment

};

60



Understanding Lvalues and Rvalues

Copyright © 2019 by Dan Saks 31

Value Categories

� Modern C++ introduces a more complex categorization of 

expressions:

expression

glvalue rvalue

lvalue xvalue prvalue

� The newer categories are:

� glvalue: a “generalized” lvalue

� prvalue: a “pure” rvalue

� xvalue: an “expiring” lvalue

61

Thanks for Listening

62


