W @blelbach

Core C++ 2019
<A NVIDIA.

The Abstract Machine <X

NVIDIA

The C++ abstract machine is a portable abstraction of
your operating system, kernel and hardware.

Copyright (C) 2018 NVIDIA Corporation 2

The Abstract Machine <X

NVIDIA

The C++ abstract machine is a portable abstraction of
your operating system, kernel and hardware.

The abstract machine is the intermediary between your
C++ program and the system that it is run on.

Copyright (C) 2018 NVIDIA Corporation 3

The Abstract Machine <X

NVIDIA

int main()

{
std::thread t(f);

L. ..
}

Copyright (C) 2018 NVIDIA Corporation 4

The Abstract Machine <X

NVIDIA

e we e e e we me

e e e e e (mc v ve e e e el u-e e

Abstraction for concurrent computation: a thread

_______________________ }

pthread_create()

— pthread library implementation

System call API
0S support: kernel thread management

!

o X86-64
- e _ modern multi-core CPU

Pascal
GEFEORCE
GPL

(256 CYDACoreas)

AUDIO

Copyright (C) 2018 NVIDIA Corporation Source: anandtech.com, intel.com, cs.cmu.edu, slideshare.net S

https://images.anandtech.com/doci/9193/IntelE7systemarchitecture_575px.png
https://software.intel.com/sites/default/files/managed/44/00/processor-block-diagram-figure-1.png
http://15418.courses.cs.cmu.edu/spring2017content/lectures/03_progmodels/images/slide_023.jpg
https://www.slideshare.net/ptc1760/processes-threads-inwindowsvista

The Abstract Machine <X

NVIDIA

Portable Code Abstract Machine Concrete Systems

Threads /

int main()

{
std::thread t(f);

ﬁ
/] ...

L -
N .4
} e
|
|
“pitvead rastel
e {,..‘...m.,

Storage e

Copyright (C) 2018 NVIDIA Corporation 6

The Abstract Machine <X

NVIDIA

C++ programs describe operations that are performed
on the abstract machine.

C++ implementations define the characteristics of the
abstract machine and translate operations on the
abstract machine into operations on the system.

Copyright (C) 2018 NVIDIA Corporation i

The Abstract Machine <X

NVIDIA

Threads

Storage

Copyright (C) 2018 NVIDIA Corporation 8

Storage Model <3

NVIDIA

Storage is flat; no notion hierarchy (caches, etc).

Objects reside in storage at a single memory location.
[intro.object] p9

Copyright (C) 2018 NVIDIA Corporation

http://eel.is/c++draft/basic.memobj#intro.object-9

Storage Model <3

NVIDIA

Some objects may not have a unique memory location.
* Eligible empty base classes.

® Objects marked [[no_unique_address]].
[intro.object] p7

Copyright (C) 2018 NVIDIA Corporation 10

http://eel.is/c++draft/basic.memobj#intro.object-7

Storage Model <3

NVIDIA

An implementation is allowed to store two objects at
the same machine address or not store an object at all.
[basic.memobj] footnote 32

11

Copyright (C) 2018 NVIDIA Corporation

http://eel.is/c++draft/basic.memobj#footnote-32

Storage Model <3

NVIDIA

An object cannot have more than one memory location.

Copyright (C) 2018 NVIDIA Corporation 12

Storage Model <3

NVIDIA

struct A {
X X;

X& X::operator=(X const& rhs)

{
if (&rhs == this) return *this;
auto newx = new X(*rhs.x);
delete x;
X = newx;
return *this;

}

}s

13

Copyright (C) 2018 NVIDIA Corporation

Storage Model <3

NVIDIA

Every thread in a program can potentially access every

object and function in a program.
[intro.multithread] pl s2

Copyright (C) 2018 NVIDIA Corporation 14

http://eel.is/c++draft/intro.multithread#1.sentence-2

Storage Model

Copyright (C) 2018 NVIDIA Corporation

Process O

2535
e

t 1

<

NVIDIA.

15

Storage Model <X

NVIDIA.

Process O

ég?é

Copyright (C) 2018 NVIDIA Corporation 16

Storage Model

Copyright (C) 2018 NVIDIA Corporation

Process O

4

Process 1

Hi

S S .

<

NVIDIA.

17

Storage Model

Process O

Copyright (C) 2018 NVIDIA Corporation

Process 1

<3

NVIDIA.

18

Storage Model

Copyright (C) 2018 NVIDIA Corporation

Process O

2535

—
e e

<

NVIDIA.

19

Storage Model <3

NVIDIA.

Process O

%

Copyright (C) 2018 NVIDIA Corporation 20

Threads of Execution <X

NVIDIA

A thread of execution is a single flow of control in a

program which evaluates a function call; threads may
run concurrently.

[intro.multithread] p1 s1

Copyright (C) 2018 NVIDIA Corporation Zi

http://eel.is/c++draft/intro.multithread#1.sentence-1

Threads of Execution <X

NVIDIA

A thread of execution is a single flow of control in a

program which evaluates a function call; threads may
run concurrently.

[intro.multithread] p1 s1

Main Thread of Execution

Evaluate main()

Copyright (C) 2018 NVIDIA Corporation 22

http://eel.is/c++draft/intro.multithread#1.sentence-1

Threads of Execution <X

NVIDIA

A thread of execution is a single flow of control in a

program which evaluates a function call; threads may
run concurrently.

[intro.multithread] p1 s1

Main Thread of Execution std: :thread t(f);

Evaluate main() SVEIVECRI@

Copyright (C) 2018 NVIDIA Corporation 23

http://eel.is/c++draft/intro.multithread#1.sentence-1

Threads of Execution <X

NVIDIA

Variables with static storage duration are initialized as
a consequence of program initiation.

[basic.start.static] pl

Main Thread of Execution std: :thread t(f);
Static storage initialization
Evaluate main() SVEIVECRI@

Static storage destruction

24

Copyright (C) 2018 NVIDIA Corporation

http://eel.is/c++draft/basic.start#static-1

Threads of Execution <X

NVIDIA

Variables with static storage duration are initialized as
a consequence of program initiation. Variables with
thread storage duration are initialized as a

consequence of thread execution.
[basic.start.static] pl

Main Thread of Execution std: :thread t(f);

Static storage initialization

Thread storage initialization Thread storage initialization
Evaluate main() Evaluate ()
Thread storage destruction Thread storage destruction

Static storage destruction

Copyright (C) 2018 NVIDIA Corporation 25

http://eel.is/c++draft/basic.start#static-1

Threads of Execution <X

NVIDIA

Okay, so threads evaluate a function call.

What does it mean to evaluate a function call?

Copyright (C) 2018 NVIDIA Corporation 26

Expressions <3

NVIDIA

An expression is a sequence of operators and operands

that specifies a computation.

Copyright (C) 2018 NVIDIA Corporation

[expr.pre] pl s2

f();
f(a, b);

a + b;
// " operator+(a, b)" call.

T a= 2;

T a(2);
// "T::T(int) call.

27

http://eel.is/c++draft/expr.pre#1.sentence-2

Expressions <3
NVIDIA

Subexpressions are a part of a larger expression.
[intro.execution] p3, p4

Ta= (*f)(a+ b, c);

T::T call

(*f)(a + b, c);

/I\

(*f) a +b c

Copyright (C) 2018 NVIDIA Corporation 28

http://eel.is/c++draft/intro.execution#3
http://eel.is/c++draft/intro.execution#4

Expressions <3

NVIDIA

Full expressions are not subexpressions.

Copyright (C) 2018 NVIDIA Corporation

[intro.execution] p5

if (a==T()) { .. }

// Full expression includes:
// lvalue-to-rvalue conversion
// T-to-bool conversion

// operator==(T, T) call

29

http://eel.is/c++draft/intro.execution#5

Expressions <3

NVIDIA

Full expressions are not subexpressions.

Copyright (C) 2018 NVIDIA Corporation

[intro.execution] p5

if (a==T()) { .. }

// Full expression includes:
// lvalue-to-rvalue conversion
// T-to-bool conversion

// operator==(T, T) call

{
T b;
} // Full expression: T::~T

30

http://eel.is/c++draft/intro.execution#5

Expressions <3

NVIDIA

Full expressions may include subexpressions that are not

lexically part of the expression.

Copyright (C) 2018 NVIDIA Corporation

[intro.execution] p6

void f(T a = g());

f();

// Full expression includes:

// g call
J// T::T call

// f call

31

http://eel.is/c++draft/basic.exec#intro.execution-6

Evaluations <X
NVIDIA.

Evaluation of an expression includes value computations
and the initiation of side effects.

[intro.execution] p7 s2

32

Copyright (C) 2018 NVIDIA Corporation

http://eel.is/c++draft/intro.execution#7.sentence-2

Evaluations <X
NVIDIA.

Side effects change the environment:

Copyright (C) 2018 NVIDIA Corporation 33

Evaluations <X
nvibiaA

Side effects change the environment:
* Reading a volatile object or modifying any object.

Copyright (C) 2018 NVIDIA Corporation 34

Evaluations <X
nvibiaA

Side effects change the environment:
* Reading a volatile object or modifying any object.
Calling a library I/O function.

Copyright (C) 2018 NVIDIA Corporation 35

Evaluations <X
nvibDiA

Side effects change the environment:

* Reading a volatile object or modifying any object.
Calling a library I/O function.

¢ Calling a function that does any of the above.

[intro.execution] p7 sl

Copyright (C) 2018 NVIDIA Corporation 36

http://eel.is/c++draft/intro.execution#7.sentence-1

Evaluations <X
NVIDIA

int a;
int b;
a =a+ b;

cout << a * a;

foo(a + b);

Copyright (C) 2018 NVIDIA Corporation 37

Evaluations <X
NVIDIA

Value computations are pure and have no observable
effect.

[intro.execution] p7 s2

Copyright (C) 2018 NVIDIA Corporation 38

http://eel.is/c++draft/intro.execution#7.sentence-2

Evaluations <X
NVIDIA

Completion of the execution of an evaluation does not

Imply completion of its side effects.
[intro.execution] p7 s3

39

Copyright (C) 2018 NVIDIA Corporation

http://eel.is/c++draft/intro.execution#7.sentence-3

Evaluations <X
NVIDIA.

cout << a * a;

Copyright (C) 2018 NVIDIA Corporation 40

Sequenced Before <X

NVIDIA

Given any two evaluations A and B within the same

thread of execution, if A is sequenced before B, then

the execution of A shall precede the execution of B.
[intro.execution] p8 s2

Copyright (C) 2018 NVIDIA Corporation 41

http://eel.is/c++draft/intro.execution#8.sentence-2

Sequenced Before <X

NVIDIA

The sequenced before relationship is...

® Asymmetric: A is sequenced before B does not
iImply that B is sequenced before A.
[intro.execution] p8 sl

® Transitive: If A is sequenced before B and B is
sequenced before C, then A is sequenced before C.
[intro.execution] p8 sl

Copyright (C) 2018 NVIDIA Corporation 42

http://eel.is/c++draft/intro.execution#8.sentence-1
http://eel.is/c++draft/intro.execution#8.sentence-1

Sequenced Before <X

NVIDIA

Each full expression is sequenced before the next full
expression in program order.
[intro.execution] p9

a;
b;
/[a sequenced before b

Copyright (C) 2018 NVIDIA Corporation 43

http://eel.is/c++draft/intro.execution#9

Sequenced Before <X

NVIDIA

If A and B are indeterminately sequenced, then either A
IS sequenced before B or B is sequenced before A, but
It is unspecified which. E.g. A and B are not
interleaved.

[iIntro.execution] p8 s4

Copyright (C) 2018 NVIDIA Corporation 44

http://eel.is/c++draft/intro.execution#8.sentence-4

Sequenced Before <X

NVIDIA

If A and B are unseguenced, then A is not sequenced
before B and B is not sequenced before A. E.g. A and B
may be interleaved.

[intro.execution] p8 s3

Copyright (C) 2018 NVIDIA Corporation 45

http://eel.is/c++draft/intro.execution#8.sentence-3

Sequenced Before

A is sequenced before B

A and B are
iIndeterminately sequenced

A and B are
unsequenced

Copyright (C) 2018 NVIDIA Corporation

NVIDIA.

46

Sequenced Before

constexpr float a = // .
std: :vector<float> x
std: :vector<float> y

std: :for_loop(
std: :execution: :seq,
0, x.size(),
[&] (int 1) {
y[i] += a * x[i];
}
)

Copyright (C) 2018 NVIDIA Corporation

/] ...
/l ..

>

NVIDIA

load y[i]
load X[i]
fma a* x[i] + y[i]
store y[i]

load y[i+2]
load Xx[i+2]
fmaa* x[i+2] + y[i+2]
store y[i+2]
load y[i+3]
load x[i+3]
fma a * x[i+3] + y[i+2]
store y[i+3]

a7

Sequenced Before

constexpr float a = //
std: :vector<float> x =
std: :vector<float> y =
std: :for_loop(

std: :execution: :unseq,

9, x.size(),

[&] (int i) {

y[i] += a * x[1i];

}

)

Copyright (C) 2018 NVIDIA Corporation

/] ...
/] ...

<3

NVIDIA

load y[i]

load y[i+2]
load y[i+3]
load Xx[i]

load x[i+2]
load x[i+3]
fma a* x[i] + y[i]

fmaa* x[i+2] + y[i+2]
fma a * x[i+3] + y[i+2]
store y[i]

store y[i+2]
store y[i+3]

48

Sequenced Before

constexpr float a = // .
std: :vector<float> x
std: :vector<float> y

std: :for_loop(
std: :execution: :unseq,
0, x.size(),

[&] (int i) {
y[i] += a * x[i];
}

)s

Copyright (C) 2018 NVIDIA Corporation

/] ...
/l ..

<3

NVIDIA

vioad y[i:i+3]
vioad x[i:i+3]
vima a * x[i:1+3] + y[i:1+3]
vstore y[i:i+3]

49

Statements <X

NVIDIA

Statements are compositions of full expressions.

Copyright (C) 2018 NVIDIA Corporation 50

Statements <X
nvibDiA

Statements are compositions of full expressions.
{

statemento;
statementl;

/["statementO is

// sequenced before
/[“statementl .

Copyright (C) 2018 NVIDIA Corporation ol

Statements <X
NVIDIA

Statements are compositions of full expressions.

{
statemento; if (condition)
statementl; body;
I/l "statementO is /["condition is
// sequenced before I/l sequenced before
I/l “statementl . // "body .

Copyright (C) 2018 NVIDIA Corporation 52

Statements <X

NVIDIA

Statements are compositions of full expressions.

{
statemento; if (condition)
statementl; body;
I/l "statementO is /["condition is
// sequenced before I/l sequenced before
I/l “statementl . // "body .

}

while (condition)
body;
/[Each evaluation of condition®
/l'is sequenced before each
/[evaluation of "body .

53

Copyright (C) 2018 NVIDIA Corporation

Function Evaluation <X
NVIDIA

When calling a function...

1. Every evaluation within the function and every evaluation not
within the function are indeterminately sequenced.

[intro.execution] pll1 s2

Copyright (C) 2018 NVIDIA Corporation o4

http://eel.is/c++draft/basic.exec#intro.execution-11.sentence-2

Function Evaluation <X
NVIDIA

When calling a function...

1. Every evaluation within the function and every evaluation not
within the function are indeterminately sequenced.
[intro.execution] pl11 s2

2. The expression designating the function is sequenced before
the argument expressions.

[expr.calll] p8 sl

Copyright (C) 2018 NVIDIA Corporation 55

http://eel.is/c++draft/basic.exec#intro.execution-11.sentence-2
http://eel.is/c++draft/expr#call-8.sentence-1

Function Evaluation <X
NVIDIA

When calling a function...

1. Every evaluation within the function and every evaluation not
within the function are indeterminately sequenced.
[intro.execution] pl11 s2

2. The expression designating the function is sequenced before
the argument expressions.

[expr.calll] p8 sl

3. Each argument expression is indeterminately sequenced with
all other argument expressions.

[expr.calll p8 s?2

Copyright (C) 2018 NVIDIA Corporation 56

http://eel.is/c++draft/basic.exec#intro.execution-11.sentence-2
http://eel.is/c++draft/expr#call-8.sentence-1
http://eel.is/c++draft/expr#call-8.sentence-2

Function Evaluation <X
NVIDIA

When calling a function...

1. Every evaluation within the function and every evaluation not
within the function are indeterminately sequenced.
[intro.execution] pl11 s2

2. The expression designating the function is sequenced before
the argument expressions.

[expr.calll] p8 sl

3. Each argument expression is indeterminately sequenced with
all other argument expressions.

[expr.calll p8 s?2

4. Every expression in the body of the function is sequenced
after the expression designating the function and every
argument expression of the function .

[intro.execution] pl1 sl

Copyright (C) 2018 NVIDIA Corporation o7

http://eel.is/c++draft/basic.exec#intro.execution-11.sentence-2
http://eel.is/c++draft/expr#call-8.sentence-1
http://eel.is/c++draft/expr#call-8.sentence-2
http://eel.is/c++draft/basic.exec#intro.execution-11.sentence-1

Function Evaluation <X
NVIDIA

void b(..) { e; }

g(a, (b)(c, d), f);

Copyright (C) 2018 NVIDIA Corporation 58

Function Evaluation <X
nvibDiA

void b(..) { e; }

g(a, (b)(c, d), f);

a and e are indeterminately sequenced (Rule 1)
f and e are indeterminately sequenced (Rule 1)

Copyright (C) 2018 NVIDIA Corporation 59

Function Evaluation <X

NVIDIA

void b(..) { e; }

g(a, (b)(c, d), f);

a and e are indeterminately sequenced (Rule 1)
f and e are indeterminately sequenced (Rule 1)
(b) Is sequenced before c and d (Rule 2)

Copyright (C) 2018 NVIDIA Corporation (5]0]

Function Evaluation <X

NVIDIA

void b(..) { e; }

g(a, (b)(c, d), f);

a and e are indeterminately sequenced (Rule 1)
f and e are indeterminately sequenced (Rule 1)
(b) Is sequenced before c and d (Rule 2)

c and d are indeterminately sequenced (Rule 3)

Copyright (C) 2018 NVIDIA Corporation 61

Function Evaluation <X

NVIDIA

void b(..) { e; }

g(a, (b)(c, d), f);

a and e are indeterminately sequenced (Rule 1)
f and e are indeterminately sequenced (Rule 1)
(b) Is sequenced before c and d (Rule 2)
c and d are indeterminately sequenced (Rule 3)
c and d are sequenced before e (Rule 4)

Copyright (C) 2018 NVIDIA Corporation 62

Function Evaluation <X

NVIDIA

void b(..) { e; }

g(a, (b)(c, d), f);

a and e are indeterminately sequenced (Rule 1)

f and e are indeterminately sequenced (Rule 1)
(b) is sequenced before c and d (Rule 2)

c and d are indeterminately sequenced (Rule 3)
c and d are sequenced before e (Rule 4)

a—f are sequenced before the body of g (Rule 2)

Copyright (C) 2018 NVIDIA Corporation 63

Initializer Lists <X

NVIDIA

Each element of a brace initializer is sequenced before

the all subsequent elements.
[dcl.init] pl17

Copyright (C) 2018 NVIDIA Corporation 64

http://eel.is/c++draft/dcl.init#17

Construction >
NVIDIA

struct A {
A(int i) { cout << i; }
}s

tuple to (A(Q), A(1)) ;

tuple t1 { A(9), A(1) } ;

Copyright (C) 2018 NVIDIA Corporation 65

Construction >
NVIDIA

struct A {
A(int i) { cout << i; }
}s

tuple to (A(Q), A(1)) ;
// GCC 8: “10”

tuple t1 { A(9), A(1) } ;
// GCC 8: “01”

66

Copyright (C) 2018 NVIDIA Corporation

Construction >

NVIDIA

struct A {
A(int i) { cout << i; }
}s

tuple to (A(Q), A(1)) ;
// GCC 8: “10”
// LLVM 7: “01”

tuple t1 { A(9), A(1) } ;
// GCC 8: “01”
// LLVM 7: “01”

Copyright (C) 2018 NVIDIA Corporation 67

Operator Evaluation <X
NVIDIA

The value computations (but not the side effects) of an
operator are sequenced before the value computations
(but not the side effects) of its operands.

[intro.execution] p10 s2

68

Copyright (C) 2018 NVIDIA Corporation

http://eel.is/c++draft/basic.exec#intro.execution-10.sentence-2

Operator Evaluation <X
NVIDIA

The operand expressions to the following operators
are sequenced left to right:

® E1 && E2 [expr.log.and] p2 s2
* E1 || E2 [expr.log.or] p2 s2
® E1 << E2and E1 »>> E2 [expr.shift] p4
® E1, E2 [expr.comma] pls3
® E1[E2] [expr.sub] pl s6

L)

El.*E2 and E1->*E2 [expr.mptr.oper] p3 s3

Copyright (C) 2018 NVIDIA Corporation 69

http://eel.is/c++draft/expr#log.and-2.sentence-2
http://eel.is/c++draft/expr#log.or-2.sentence-2
http://eel.is/c++draft/expr#shift-4
http://eel.is/c++draft/expr#comma-1.sentence-3
http://eel.is/c++draft/expr#sub-1.sentence-6
http://eel.is/c++draft/expr#mptr.oper-4.sentence-3

Operator Evaluation <X
NVIDIA

The operands expressions to the following operators
operators are sequenced right to left:

® E2 = Eland E2 @= E1 [expr.ass] pl s5

70

Copyright (C) 2018 NVIDIA Corporation

http://eel.is/c++draft/expr#ass-1.sentence-5

Synchronizes With <X

NVIDIA

Two library operations A and B may be related by the
svynchronizes with relation.

[intro.races] p6

Copyright (C) 2018 NVIDIA Corporation 2

http://eel.is/c++draft/intro.races#6.sentence-1

Synchronizes With <X

NVIDIA

Asymmetric: A synchronizes with B does not imply
that B synchronizes with A.

Copyright (C) 2018 NVIDIA Corporation 73

Synchronizes With

Ways to achieve synchronizes with:

* Atomic acquire/release.
Mutex lock/unlock.

Thread create/join.
Future/promise.

Parallel algorithm fork/join.

.

»

»

»

Copyright (C) 2018 NVIDIA Corporation

<3

NVIDIA

74

Synchronizes With <X

NVIDIA

T data = // ...
atomic<bool> r(false);

data = ...
r.store(l1, memory_order_release);
Synchronizeswith\ if (r.load(memory_order_acquire)) {
T tmp = data;
// ...

}

Copyright (C) 2018 NVIDIA Corporation 75

Synchronizes With <X

NVIDIA
T data = // ...
atomic<bool> r(false);
data = ...
r.store(l1, memory_order_release);
Synchronizeswith\ if (r.load(memory_order_acquire)) {
T tmp = data;
// ...
}
N if (r.load(d ire)) {
- - if (r.load(memory_order_acquire
synchronizes with , .,
/] %
data = / }
r.store(1, memory_order_release);

Copyright (C) 2018 NVIDIA Corporation 76

Synchronizes With

Synchronizes
with

Copyright (C) 2018 NVIDIA Corporation

T data = // ...
std: :mutex mtx;

{

)

~

-

~

std::lock_guard 1(mtx); //

T tmp = data;
/NG

//

std::lock guard 1(mtx); //

T tmp = data;
/] ...

//

std::lock guard 1(mtx); //

T tmp = data;
/] ...

//

Lock

Unlock

Lock

Unlock

Lock

Unlock

<3

NVIDIA

1

Happens Before <3

NVIDIA

Given any two evaluations A and B...
If A happens before B:

78

Copyright (C) 2018 NVIDIA Corporation

Happens Before <3

NVIDIA

Given any two evaluations A and B...
If A happens before B:
® A is sequenced before B, or

Copyright (C) 2018 NVIDIA Corporation %9

Happens Before <3

NVIDIA

Given any two evaluations A and B...
If A happens before B:

® A is sequenced before B, or

® A synchronizes with B, or

Copyright (C) 2018 NVIDIA Corporation 80

Happens Before <3

NVIDIA

Given any two evaluations A and B...
If A happens before B:

® A is sequenced before B, or

® A synchronizes with B, or

® For some evaluation X, A happens before X and X
happens before B.

[intro.races] p7, p8, p9, pl10

Copyright (C) 2018 NVIDIA Corporation 81

http://eel.is/c++draft/intro.races#7
http://eel.is/c++draft/intro.races#8
http://eel.is/c++draft/intro.races#9
http://eel.is/c++draft/intro.races#10

Happens Before <3

NVIDIA

Happens before doesn’t mean happened before.

Copyright (C) 2018 NVIDIA Corporation 82

Happens Before <3

NVIDIA.

// GCC 8.2 -03 x86-64

int x = 0; X:

.zero 4
int y = 0; y:

.zero 4
void foo() foo():
{

Copyright (C) 2018 NVIDIA Corporation Source: Preshing on Programming 83

http://preshing.com/20130702/the-happens-before-relation/

Happens Before <3

NVIDIA

Happens before doesn’t mean happened before.

Happening before doesn’t mean happens before.

Copyright (C) 2018 NVIDIA Corporation 84

Happens Before <3

NVIDIA

std: :atomic<bool> ready = false;
int data = 0;

std: :thread producer(

[&] {

data = 42;

ready.store(true, memory order_relaxed);
})s

std: :thread consumer(

[&] {
if (ready.load(memory order relaxed))
std: :cout << data;

})s

Copyright (C) 2018 NVIDIA Corporation Source: Preshing on Programming 85

http://preshing.com/20130702/the-happens-before-relation/

Happens Before N —N

® Happens before describes arbitrary concatenations
of sequenced before and synchronizes with.

Happens Before

Sequenced Before Synchronizes With
(within a thread) (between threads)

Atomic
Acquire
Release

Consequence of
program order

Copyright (C) 2018 NVIDIA Corporation 86

Execution Steps <3

NVIDIA

The evaluations executed by threads are delineated by
execution steps.

[intro.progress] p3

Copyright (C) 2018 NVIDIA Corporation 87

http://eel.is/c++draft/intro.progress#3

Execution Steps <3

NVIDIA

The evaluations executed by threads are delineated by
execution steps.

[intro.progress] p3

An execution step is:
® Termination of the thread.

Copyright (C) 2018 NVIDIA Corporation 88

http://eel.is/c++draft/intro.progress#3

Execution Steps <3

NVIDIA

The evaluations executed by threads are delineated by
execution steps.

[intro.progress] p3

An execution step is:
® Termination of the thread.
® An access of avolatile object.

Copyright (C) 2018 NVIDIA Corporation 89

http://eel.is/c++draft/intro.progress#3

Execution Steps <3

NVIDIA

The evaluations executed by threads are delineated by
execution steps.

[intro.progress] p3

An execution step is:
¢ Termination of the thread.
® An access of avolatile object.

® Completion of:
® Alibrary I/O function call.

90

Copyright (C) 2018 NVIDIA Corporation

http://eel.is/c++draft/intro.progress#3

Execution Steps <3

NVIDIA

The evaluations executed by threads are delineated by
execution steps.

[intro.progress] p3

An execution step is:

¢ Termination of the thread.

® An access of avolatile object.
® Completion of:

® Alibrary I/O function call.
® A synchronization operation.

Copyright (C) 2018 NVIDIA Corporation L

http://eel.is/c++draft/intro.progress#3

Execution Steps <3

NVIDIA

The evaluations executed by threads are delineated by
execution steps.

[intro.progress] p3

An execution step is:
¢ Termination of the thread.
® An access of avolatile object.
® Completion of:
® Alibrary I/O function call.

® A synchronization operation.
An atomic operation.

Copyright (C) 2018 NVIDIA Corporation 92

http://eel.is/c++draft/intro.progress#3

Forward Progress <3
NVIDIA

Some atomic operations may fail spuriously due to
interference from other threads.

Implementations are encouraged, but not required, to
prevent spurious failures from indefinitely delaying
progress.

[intro.progress] p2.2

Copyright (C) 2018 NVIDIA Corporation 93

http://eel.is/c++draft/intro.progress#2.2

Forward Progress <3
NVIDIA

Block: Wait for a condition to be satisfied before

continuing execution.
[defns.block]

Copyright (C) 2018 NVIDIA Corporation 94

http://eel.is/c++draft/defns.block

Forward Progress <3
NVIDIA

Blocking library functions are considered to
continuously execute execution steps while waiting for

their condition to be satisfied.
Thus, blocking makes progress.

Check

i é Done

vcondmon
false

95

Copyright (C) 2018 NVIDIA Corporation

Forward Progress <3
nvibDiA

Forward progress guarantees that something
observable should eventually happens.

96

Copyright (C) 2018 NVIDIA Corporation

Execution Steps <3

NVIDIA

Implementations may assume that all threads will
eventually perform an execution step.
[intro.progress] pl

Copyright (C) 2018 NVIDIA Corporation St

http://eel.is/c++draft/basic.exec#intro.progress-1

Execution Steps <3

NVIDIA

Implementations may assume that all threads will

eventually perform an execution step.
[intro.progress] pl

AKA infinite loops that have no observable effects are
undefined behavior.

98

Copyright (C) 2018 NVIDIA Corporation

http://eel.is/c++draft/basic.exec#intro.progress-1

Forward Progress =
NVIDIA.

Three classes of forward progress guarantees:
® Concurrent forward progress.
® Parallel forward progress.

® Weakly parallel forward progress.

Copyright (C) 2018 NVIDIA Corporation 99

Forward Progress <3
NVIDIA

Concurrent forward progress: The thread will make
progress, regardless of whether other threads are

making progress.
[iIntro.progress] p7

Copyright (C) 2018 NVIDIA Corporation 100

http://eel.is/c++draft/intro.progress#7

Forward Progress

Concurrent forward progress example:

* Preemptive OS thread scheduling.
¢ Unbounded thread pool.

Copyright (C) 2018 NVIDIA Corporation Source: P0072

>

NVIDIA

101

https://wg21.link/P0072

Forward Progress <3
NVIDIA

Parallel forward progress: Once the thread has
executed its first execution step, the thread will make

progress.
[iIntro.progress] p9

Copyright (C) 2018 NVIDIA Corporation 102

http://eel.is/c++draft/intro.progress#9

Forward Progress <3
NVIDIA

Parallel forward progress example:

* Run-to-completion userspace tasking.
* Bounded thread pool.

® Threads on modern NVIDIA GPUSs.

Copyright (C) 2018 NVIDIA Corporation Source: P0072 103

https://wg21.link/P0072

Forward Progress <3
NVIDIA

Weakly parallel forward progress: The thread is not
guaranteed to make progress.
[intro.progress] pll

Copyright (C) 2018 NVIDIA Corporation 104

http://eel.is/c++draft/intro.progress#11

Forward Progress

Weakly parallel forward progress example:

* Non-preemptive OS thread scheduling.

Suspendable userspace tasking.
Work-stealing task schedulers.
Fibers.

Threadless asynchrony.
* Lazy execution.
C++ coroutines.

Threads on legacy GPUs.

)

L)

»

Copyright (C) 2018 NVIDIA Corporation Source: P0072

<3

NVIDIA

105

https://wg21.link/P0072

Forward Progress <3
NVIDIA

Which guarantee does the main thread make?

[intro.progress] p8

Copyright (C) 2018 NVIDIA Corporation 106

http://eel.is/c++draft/intro.progress#8

Forward Progress <3
NVIDIA

Which guarantee does the main thread make?

Implementation defined.
[intro.progress] p8

Copyright (C) 2018 NVIDIA Corporation 107

http://eel.is/c++draft/intro.progress#8

Forward Progress <3
NVIDIA

Which guarantee do std: : threads make?

[intro.progress] p8

Copyright (C) 2018 NVIDIA Corporation 108

http://eel.is/c++draft/intro.progress#8

Forward Progress <3
NVIDIA

Which guarantee do std: : threads make?

Implementation defined.
[intro.progress] p8

Copyright (C) 2018 NVIDIA Corporation 109

http://eel.is/c++draft/intro.progress#8

Boost Blocking <3

NVIDIA

Boost Blocking: Block on a thread with weaker forward
progress while preserving the calling thread’s forward
progress.

[intro.progress] pl4

110

Copyright (C) 2018 NVIDIA Corporation

http://eel.is/c++draft/intro.multithread#intro.progress-14

Boost Blocking <3

NVIDIA

When a thread P boost blocks on a set S of other
threads, the forward progress guarantees of at least
one of the threads in S is temporarily upgraded to P’s
forward progress guarantee. Repeat until the blocking
condition is satisfied.

[intro.progress] pl4

Copyright (C) 2018 NVIDIA Corporation 111

http://eel.is/c++draft/intro.multithread#intro.progress-14

Boost Blocking <X

NVIDIA

Boost blocking ensures your children threads make
progress, not your siblings.

Copyright (C) 2018 NVIDIA Corporation 112

Boost Blocking <3

NVIDIA

struct lazy thread {
function<void()> f;

void join() {

if (f) {
// Boost block by running the thread in the
// calling thread.
£();
f = function<void()>{};

} else {
throw make_error_code(errc::invalid_argument);

}
}
}s

113

Copyright (C) 2018 NVIDIA Corporation

Boost Blocking .

NVIDIA.

while (!empty && !done) {
auto f = pop_next();
f(O);

}

Copyright (C) 2018 NVIDIA Corporation 114

Boost Blocking <3

NVIDIA.

while (!empty && !done) {
auto ¥ = pop next();
f(O);

}

Copyright (C) 2018 NVIDIA Corporation 115

Boost Blocking <X

NVIDIA.
while (!empty && !done) {
auto f = pop_next();
}

Copyright (C) 2018 NVIDIA Corporation 116

Boost Blocking <3

NVIDIA

static_thread_pool pool(..);

auto task = pool.execute_async(

)5

117

Copyright (C) 2018 NVIDIA Corporation

Boost Blocking <3

NVIDIA

static_thread_pool pool(..);

auto task = pool.execute_async(

[&] {

}
)5

118

Copyright (C) 2018 NVIDIA Corporation

Boost Blocking >

NVIDIA

static_thread_pool pool(..);

auto task = pool.execute_async(
[&] {
auto childe = pool.execute _async(..);
auto childl = pool.execute_async(..);

childe.join();
childl.join();
}
)5

119

Copyright (C) 2018 NVIDIA Corporation

Boost Blocking >

NVIDIA

static_thread_pool pool(1);

auto task = pool.execute_async(
[&] {
auto childe = pool.execute _async(..);
auto childl = pool.execute_async(..);

child@.join();
childl.join();
}
)

120

Copyright (C) 2018 NVIDIA Corporation

Summary <3

NVIDIA

C++ Execution Model:

® Threads evaluate expressions that access and
modify flat storage.

Evaluation within a thread is driven by sequenced
before relations.

Interactions between threads is driven by
synchronizes with relations.

Forward progress promises eventual termination.

)

)l

L))

Copyright (C) 2018 NVIDIA Corporation 121

Caveats

C++17 and beyond

Copyright (C) 2018 NVIDIA Corporation

<3

NVIDIA

122

Caveats <X

NVIDIA

std: :memory_order_consume

Copyright (C) 2018 NVIDIA Corporation 123

Caveats <3

NVIDIA.

std: :memor r_consume

Copyright (C) 2018 NVIDIA Corporation 124

Summary <3

NVIDIA

C++ Execution Model:

® Threads evaluate expressions that access and
modify flat storage.

Evaluation within a thread is driven by sequenced
before relations.

Interactions between threads is driven by
synchronizes with relations.

Forward progress promises eventual termination.

W @blelbach

Copyright (C) 2018 NVIDIA Corporation 125

L)

L)

L))

