
The C++ Execution Model

Bryce Adelstein Lelbach

@blelbach

Core C++ 2019

1



Copyright (C) 2018 NVIDIA Corporation

The Abstract Machine

The C++ abstract machine is a portable abstraction of 

your operating system, kernel and hardware.

2



Copyright (C) 2018 NVIDIA Corporation

The Abstract Machine

The C++ abstract machine is a portable abstraction of 

your operating system, kernel and hardware.

The abstract machine is the intermediary between your 

C++ program and the system that it is run on.

3



Copyright (C) 2018 NVIDIA Corporation

The Abstract Machine

int main()
{
std::thread t(f);

// ...
}

4



Copyright (C) 2018 NVIDIA Corporation

The Abstract Machine

Source: anandtech.com, intel.com, cs.cmu.edu, slideshare.net

Windows OS

Job

Process

Primary Thread

Fiber Fiber

Thread

Process

5

https://images.anandtech.com/doci/9193/IntelE7systemarchitecture_575px.png
https://software.intel.com/sites/default/files/managed/44/00/processor-block-diagram-figure-1.png
http://15418.courses.cs.cmu.edu/spring2017content/lectures/03_progmodels/images/slide_023.jpg
https://www.slideshare.net/ptc1760/processes-threads-inwindowsvista


Copyright (C) 2018 NVIDIA Corporation

The Abstract Machine

Storage

Threads

Abstract MachinePortable Code Concrete Systems

6

Window
s OS

Job

Process

Primary 
Thread

Fiber Fiber

Thread

Process

int main()
{

std::thread t(f);

// ...
}



Copyright (C) 2018 NVIDIA Corporation

The Abstract Machine

C++ programs describe operations that are performed 

on the abstract machine.

C++ implementations define the characteristics of the 

abstract machine and translate operations on the 

abstract machine into operations on the system.

7



Copyright (C) 2018 NVIDIA Corporation

The Abstract Machine

Storage

Threads

8



Copyright (C) 2018 NVIDIA Corporation

Storage Model

Storage is flat; no notion hierarchy (caches, etc).

Objects reside in storage at a single memory location.

[intro.object] p9

9

http://eel.is/c++draft/basic.memobj#intro.object-9


Copyright (C) 2018 NVIDIA Corporation

Storage Model

Some objects may not have a unique memory location.

Eligible empty base classes.

Objects marked [[no_unique_address]].

[intro.object] p7

10

http://eel.is/c++draft/basic.memobj#intro.object-7


Copyright (C) 2018 NVIDIA Corporation

Storage Model

An implementation is allowed to store two objects at 

the same machine address or not store an object at all.

[basic.memobj] footnote 32

11

http://eel.is/c++draft/basic.memobj#footnote-32


Copyright (C) 2018 NVIDIA Corporation

Storage Model

An object cannot have more than one memory location.

12



Copyright (C) 2018 NVIDIA Corporation

Storage Model

struct A {
X x;

X& X::operator=(X const& rhs)
{

if (&rhs == this) return *this;
auto newx = new X(*rhs.x);
delete x;
x = newx;
return *this;

}
};

13



Copyright (C) 2018 NVIDIA Corporation

Storage Model

Every thread in a program can potentially access every 

object and function in a program.
[intro.multithread] p1 s2

14

http://eel.is/c++draft/intro.multithread#1.sentence-2


Copyright (C) 2018 NVIDIA Corporation

Storage Model

Process 0

Main Memory

PU0 PU1
L1 L2 L1

Virtual Memory

Process

Memory

15



Copyright (C) 2018 NVIDIA Corporation

Storage Model

Process 0

Main Memory

PU0 PU1
L1 L2 L1

Virtual Memory

Process

Memory

16



Copyright (C) 2018 NVIDIA Corporation

Storage Model

Process 0

Process

Memory

Process 1

Process

Memory

Shared 

Memory

Main Memory

PU0 PU1
L1 L2 L1

Virtual Memory

17



Copyright (C) 2018 NVIDIA Corporation

Storage Model

Process 0

Process

Memory

Process 1

Process

Memory

Shared 

Memory

Main Memory

PU0 PU1
L1 L2 L1

Virtual Memory

18



Copyright (C) 2018 NVIDIA Corporation

Storage Model

Process 0

PU0 Memory

PU0 PU1

Virtual Memory

Process

Memory

PU1 Memory

19



Copyright (C) 2018 NVIDIA Corporation

Storage Model

Process 0

PU0 Memory

PU0 PU1

Virtual Memory

Process

Memory

PU1 Memory

20



Copyright (C) 2018 NVIDIA Corporation

Threads of Execution

A thread of execution is a single flow of control in a 

program which evaluates a function call; threads may 

run concurrently.
[intro.multithread] p1 s1

21

http://eel.is/c++draft/intro.multithread#1.sentence-1


Copyright (C) 2018 NVIDIA Corporation

Threads of Execution

A thread of execution is a single flow of control in a 

program which evaluates a function call; threads may 

run concurrently.
[intro.multithread] p1 s1

Main Thread of Execution

Evaluate main()

22

http://eel.is/c++draft/intro.multithread#1.sentence-1


Copyright (C) 2018 NVIDIA Corporation

Threads of Execution

A thread of execution is a single flow of control in a 

program which evaluates a function call; threads may 

run concurrently.
[intro.multithread] p1 s1

Main Thread of Execution

Evaluate main()

std::thread t(f);

Evaluate f()

23

http://eel.is/c++draft/intro.multithread#1.sentence-1


Copyright (C) 2018 NVIDIA Corporation

Threads of Execution

Variables with static storage duration are initialized as 

a consequence of program initiation. Variables with 

thread storage duration are initialized as a 

consequence of thread execution.
[basic.start.static] p1

Main Thread of Execution

Static storage initialization

Evaluate main()

Static storage destruction

std::thread t(f);

Evaluate f()

24

http://eel.is/c++draft/basic.start#static-1


Copyright (C) 2018 NVIDIA Corporation

Threads of Execution

Variables with static storage duration are initialized as 

a consequence of program initiation. Variables with 

thread storage duration are initialized as a 

consequence of thread execution.
[basic.start.static] p1

Main Thread of Execution

Static storage initialization

Thread storage initialization

Evaluate main()
Thread storage destruction

Static storage destruction

std::thread t(f);

Thread storage initialization

Evaluate f()
Thread storage destruction

25

http://eel.is/c++draft/basic.start#static-1


Copyright (C) 2018 NVIDIA Corporation

Threads of Execution

Okay, so threads evaluate a function call.

What does it mean to evaluate a function call?

26



Copyright (C) 2018 NVIDIA Corporation

Expressions

An expression is a sequence of operators and operands 

that specifies a computation.

[expr.pre] p1 s2

f();
f(a, b);

a + b;
// `operator+(a, b)` call.

T a = 2;
T a(2);
// `T::T(int)` call.

27

http://eel.is/c++draft/expr.pre#1.sentence-2


Copyright (C) 2018 NVIDIA Corporation

Expressions

Subexpressions are a part of a larger expression.

[intro.execution] p3, p4

T a = (*f)(a + b, c);

T::T call

(*f) a + b c

(*f)(a + b, c);

28

http://eel.is/c++draft/intro.execution#3
http://eel.is/c++draft/intro.execution#4


Copyright (C) 2018 NVIDIA Corporation

Expressions

Full expressions are not subexpressions.

[intro.execution] p5

if (a == T()) { … }
// Full expression includes:
// lvalue-to-rvalue conversion
// T-to-bool conversion
// operator==(T, T) call

29

http://eel.is/c++draft/intro.execution#5


Copyright (C) 2018 NVIDIA Corporation

Expressions

Full expressions are not subexpressions.

[intro.execution] p5

if (a == T()) { … }
// Full expression includes:
// lvalue-to-rvalue conversion
// T-to-bool conversion
// operator==(T, T) call

{
T b;

} // Full expression: T::~T

30

http://eel.is/c++draft/intro.execution#5


Copyright (C) 2018 NVIDIA Corporation

Expressions

Full expressions may include subexpressions that are not 

lexically part of the expression.

[intro.execution] p6

void f(T a = g());

f();
// Full expression includes:
// g call
// T::T call
// f call

31

http://eel.is/c++draft/basic.exec#intro.execution-6


Copyright (C) 2018 NVIDIA Corporation

Evaluations

Evaluation of an expression includes value computations

and the initiation of side effects.

[intro.execution] p7 s2

32

http://eel.is/c++draft/intro.execution#7.sentence-2


Copyright (C) 2018 NVIDIA Corporation

Evaluations

Side effects change the environment:

33



Copyright (C) 2018 NVIDIA Corporation

Evaluations

Side effects change the environment:

Reading a volatile object or modifying any object.

34



Copyright (C) 2018 NVIDIA Corporation

Evaluations

Side effects change the environment:

Reading a volatile object or modifying any object.

Calling a library I/O function.

35



Copyright (C) 2018 NVIDIA Corporation

Evaluations

Side effects change the environment:

Reading a volatile object or modifying any object.

Calling a library I/O function.

Calling a function that does any of the above.

[intro.execution] p7 s1

36

http://eel.is/c++draft/intro.execution#7.sentence-1


Copyright (C) 2018 NVIDIA Corporation

Evaluations

int a;
int b;
a = a + b;

cout << a * a;

foo(a + b);

37



Copyright (C) 2018 NVIDIA Corporation

Evaluations

Value computations are pure and have no observable 

effect.

[intro.execution] p7 s2

38

http://eel.is/c++draft/intro.execution#7.sentence-2


Copyright (C) 2018 NVIDIA Corporation

Evaluations

Completion of the execution of an evaluation does not 

imply completion of its side effects.

[intro.execution] p7 s3

39

http://eel.is/c++draft/intro.execution#7.sentence-3


Copyright (C) 2018 NVIDIA Corporation

Evaluations

cout << a * a;

40



Copyright (C) 2018 NVIDIA Corporation

Sequenced Before

Given any two evaluations A and B within the same 

thread of execution, if A is sequenced before B, then 

the execution of A shall precede the execution of B.

[intro.execution] p8 s2

41

http://eel.is/c++draft/intro.execution#8.sentence-2


Copyright (C) 2018 NVIDIA Corporation

Sequenced Before

The sequenced before relationship is…

Asymmetric: A is sequenced before B does not 

imply that B is sequenced before A.

[intro.execution] p8 s1

Transitive: If A is sequenced before B and B is 

sequenced before C, then A is sequenced before C.

[intro.execution] p8 s1

42

http://eel.is/c++draft/intro.execution#8.sentence-1
http://eel.is/c++draft/intro.execution#8.sentence-1


Copyright (C) 2018 NVIDIA Corporation

Sequenced Before

Each full expression is sequenced before the next full 

expression in program order.

[intro.execution] p9

a;
b;
// a sequenced before b

43

http://eel.is/c++draft/intro.execution#9


Copyright (C) 2018 NVIDIA Corporation

Sequenced Before

If A and B are indeterminately sequenced, then either A 

is sequenced before B or B is sequenced before A, but 

it is unspecified which. E.g. A and B are not 

interleaved.

[intro.execution] p8 s4

44

http://eel.is/c++draft/intro.execution#8.sentence-4


Copyright (C) 2018 NVIDIA Corporation

Sequenced Before

If A and B are unsequenced, then A is not sequenced 

before B and B is not sequenced before A. E.g. A and B 

may be interleaved.

[intro.execution] p8 s3

45

http://eel.is/c++draft/intro.execution#8.sentence-3


Copyright (C) 2018 NVIDIA Corporation

Sequenced Before

a

b

a

b

b

a

a

b

b

a

a

b

A is sequenced before B

A and B are

indeterminately sequenced

A and B are

unsequenced

b

a

46



Copyright (C) 2018 NVIDIA Corporation

Sequenced Before

constexpr float a = // ...
std::vector<float> x = // ...
std::vector<float> y = // ...

std::for_loop(
std::execution::seq,
0, x.size(),
[&] (int i) {
y[i] += a * x[i];

}
);

load y[i]

load x[i]

fma a * x[i] + y[i]

store y[i]

load y[i+1]

load x[i+1]

fma a * x[i+1] + y[i+1]

store y[i+1]

load y[i+2]

load x[i+2]

fma a * x[i+2] + y[i+2]

store y[i+2]

load y[i+3]

load x[i+3]

fma a * x[i+3] + y[i+2]

store y[i+3]

47



Copyright (C) 2018 NVIDIA Corporation

Sequenced Before

constexpr float a = // ...
std::vector<float> x = // ...
std::vector<float> y = // ...

std::for_loop(
std::execution::unseq,
0, x.size(),
[&] (int i) {
y[i] += a * x[i];

}
);

load y[i]

load y[i+1]

load y[i+2]

load y[i+3]

load x[i]

load x[i+1]

load x[i+2]

load x[i+3]

fma a * x[i] + y[i]

fma a * x[i+1] + y[i+1]

fma a * x[i+2] + y[i+2]

fma a * x[i+3] + y[i+2]

store y[i]

store y[i+1]

store y[i+2]

store y[i+3]

48



Copyright (C) 2018 NVIDIA Corporation

Sequenced Before

constexpr float a = // ...
std::vector<float> x = // ...
std::vector<float> y = // ...

std::for_loop(
std::execution::unseq,
0, x.size(),
[&] (int i) {
y[i] += a * x[i];

}
);

vload y[i:i+3]

vload x[i:i+3]

vfma a * x[i:i+3] + y[i:i+3]

vstore y[i:i+3]

49



Copyright (C) 2018 NVIDIA Corporation

Statements

Statements are compositions of full expressions.

50



Copyright (C) 2018 NVIDIA Corporation

Statements

Statements are compositions of full expressions.

{
statement0;
statement1;
// `statement0` is

// sequenced before

// `statement1`.

}

51



Copyright (C) 2018 NVIDIA Corporation

Statements

Statements are compositions of full expressions.

{
statement0;
statement1;
// `statement0` is

// sequenced before

// `statement1`.

}

if (condition)
body;

// `condition` is

// sequenced before

// `body`.

52



Copyright (C) 2018 NVIDIA Corporation

Statements

Statements are compositions of full expressions.

{
statement0;
statement1;
// `statement0` is

// sequenced before

// `statement1`.

}

if (condition)
body;

// `condition` is

// sequenced before

// `body`.

while (condition)
body;

// Each evaluation of `condition`

// is sequenced before each

// evaluation of `body`.

53



Copyright (C) 2018 NVIDIA Corporation

Function Evaluation

When calling a function…

1. Every evaluation within the function and every evaluation not 

within the function are indeterminately sequenced.

[intro.execution] p11 s2

54

http://eel.is/c++draft/basic.exec#intro.execution-11.sentence-2


Copyright (C) 2018 NVIDIA Corporation

Function Evaluation

When calling a function…

1. Every evaluation within the function and every evaluation not 

within the function are indeterminately sequenced.

[intro.execution] p11 s2

2. The expression designating the function is sequenced before

the argument expressions.

[expr.call] p8 s1

55

http://eel.is/c++draft/basic.exec#intro.execution-11.sentence-2
http://eel.is/c++draft/expr#call-8.sentence-1


Copyright (C) 2018 NVIDIA Corporation

Function Evaluation

When calling a function…

1. Every evaluation within the function and every evaluation not 

within the function are indeterminately sequenced.

[intro.execution] p11 s2

2. The expression designating the function is sequenced before

the argument expressions.

[expr.call] p8 s1

3. Each argument expression is indeterminately sequenced with 

all other argument expressions. 

[expr.call] p8 s2

56

http://eel.is/c++draft/basic.exec#intro.execution-11.sentence-2
http://eel.is/c++draft/expr#call-8.sentence-1
http://eel.is/c++draft/expr#call-8.sentence-2


Copyright (C) 2018 NVIDIA Corporation

Function Evaluation

When calling a function…

1. Every evaluation within the function and every evaluation not 

within the function are indeterminately sequenced.

[intro.execution] p11 s2

2. The expression designating the function is sequenced before

the argument expressions.

[expr.call] p8 s1

3. Each argument expression is indeterminately sequenced with 

all other argument expressions. 

[expr.call] p8 s2

4. Every expression in the body of the function is sequenced 

after the expression designating the function and every 

argument expression of the function .

[intro.execution] p11 s1

57

http://eel.is/c++draft/basic.exec#intro.execution-11.sentence-2
http://eel.is/c++draft/expr#call-8.sentence-1
http://eel.is/c++draft/expr#call-8.sentence-2
http://eel.is/c++draft/basic.exec#intro.execution-11.sentence-1


Copyright (C) 2018 NVIDIA Corporation

Function Evaluation

void b(…) { e; }

g(a, (b)(c, d), f);

58



Copyright (C) 2018 NVIDIA Corporation

Function Evaluation

a and e are indeterminately sequenced (Rule 1)

f and e are indeterminately sequenced (Rule 1)

void b(…) { e; }

g(a, (b)(c, d), f);

59



Copyright (C) 2018 NVIDIA Corporation

Function Evaluation

a and e are indeterminately sequenced (Rule 1)

f and e are indeterminately sequenced (Rule 1)

(b) is sequenced before c and d (Rule 2)

void b(…) { e; }

g(a, (b)(c, d), f);

60



Copyright (C) 2018 NVIDIA Corporation

Function Evaluation

a and e are indeterminately sequenced (Rule 1)

f and e are indeterminately sequenced (Rule 1)

(b) is sequenced before c and d (Rule 2)

c and d are indeterminately sequenced (Rule 3)

void b(…) { e; }

g(a, (b)(c, d), f);

61



Copyright (C) 2018 NVIDIA Corporation

Function Evaluation

a and e are indeterminately sequenced (Rule 1)

f and e are indeterminately sequenced (Rule 1)

(b) is sequenced before c and d (Rule 2)

c and d are indeterminately sequenced (Rule 3)

c and d are sequenced before e (Rule 4)

void b(…) { e; }

g(a, (b)(c, d), f);

62



Copyright (C) 2018 NVIDIA Corporation

Function Evaluation

a and e are indeterminately sequenced (Rule 1)

f and e are indeterminately sequenced (Rule 1)

(b) is sequenced before c and d (Rule 2)

c and d are indeterminately sequenced (Rule 3)

c and d are sequenced before e (Rule 4)

a – f are sequenced before the body of g (Rule 2)

void b(…) { e; }

g(a, (b)(c, d), f);

63



Copyright (C) 2018 NVIDIA Corporation

Initializer Lists

Each element of a brace initializer is sequenced before 

the all subsequent elements.

[dcl.init] p17

64

http://eel.is/c++draft/dcl.init#17


Copyright (C) 2018 NVIDIA Corporation

Construction

struct A {
A(int i) { cout << i; }

};

tuple t0 ( A(0), A(1) ) ;

tuple t1 { A(0), A(1) } ;

65



Copyright (C) 2018 NVIDIA Corporation

Construction

struct A {
A(int i) { cout << i; }

};

tuple t0 ( A(0), A(1) ) ;
// GCC 8:  “10”

tuple t1 { A(0), A(1) } ;
// GCC 8:  “01”

66



Copyright (C) 2018 NVIDIA Corporation

Construction

struct A {
A(int i) { cout << i; }

};

tuple t0 ( A(0), A(1) ) ;
// GCC 8:  “10”
// LLVM 7: “01”

tuple t1 { A(0), A(1) } ;
// GCC 8:  “01”
// LLVM 7: “01”

67



Copyright (C) 2018 NVIDIA Corporation

Operator Evaluation

The value computations (but not the side effects) of an 

operator are sequenced before the value computations

(but not the side effects) of its operands.

[intro.execution] p10 s2

68

http://eel.is/c++draft/basic.exec#intro.execution-10.sentence-2


Copyright (C) 2018 NVIDIA Corporation

Operator Evaluation

The operand expressions to the following operators 

are sequenced left to right:

E1 && E2 [expr.log.and] p2 s2

E1 || E2 [expr.log.or] p2 s2

E1 << E2 and E1 >> E2 [expr.shift] p4

E1, E2 [expr.comma] p1 s3

E1[E2] [expr.sub] p1 s6

E1.*E2 and E1->*E2 [expr.mptr.oper] p3 s3

69

http://eel.is/c++draft/expr#log.and-2.sentence-2
http://eel.is/c++draft/expr#log.or-2.sentence-2
http://eel.is/c++draft/expr#shift-4
http://eel.is/c++draft/expr#comma-1.sentence-3
http://eel.is/c++draft/expr#sub-1.sentence-6
http://eel.is/c++draft/expr#mptr.oper-4.sentence-3


Copyright (C) 2018 NVIDIA Corporation

Operator Evaluation

The operands expressions to the following operators 

operators are sequenced right to left:

E2 = E1 and E2 @= E1 [expr.ass] p1 s5

70

http://eel.is/c++draft/expr#ass-1.sentence-5


Copyright (C) 2018 NVIDIA Corporation

Synchronizes With

Two library operations A and B may be related by the 

synchronizes with relation.

[intro.races] p6

72

http://eel.is/c++draft/intro.races#6.sentence-1


Copyright (C) 2018 NVIDIA Corporation

Synchronizes With

Asymmetric: A synchronizes with B does not imply 

that B synchronizes with A.

73



Copyright (C) 2018 NVIDIA Corporation

Synchronizes With

Ways to achieve synchronizes with:

Atomic acquire/release.

Mutex lock/unlock.

Thread create/join.

Future/promise.

Parallel algorithm fork/join.

74



Copyright (C) 2018 NVIDIA Corporation

Synchronizes With

T data = // ...
atomic<bool> r(false);

data = ...
r.store(1, memory_order_release);

if (r.load(memory_order_acquire)) {
T tmp = data;
// ...

}

Synchronizes with

75



Copyright (C) 2018 NVIDIA Corporation

Synchronizes With

T data = // ...
atomic<bool> r(false);

data = ...
r.store(1, memory_order_release);

if (r.load(memory_order_acquire)) {
T tmp = data;
// ...

}

Synchronizes with

No

synchronizes with

data = ...
r.store(1, memory_order_release);

if (r.load(memory_order_acquire)) {
T tmp = data;
// ...

}

76



Copyright (C) 2018 NVIDIA Corporation

Synchronizes With

T data = // ...
std::mutex mtx;

{ std::lock_guard l(mtx); // Lock
T tmp = data;
// ...

}                         // Unlock

{ std::lock_guard l(mtx); // Lock
T tmp = data;
// ...

}                         // Unlock

{ std::lock_guard l(mtx); // Lock
T tmp = data;
// ...

}                         // Unlock

Synchronizes

with

77



Copyright (C) 2018 NVIDIA Corporation

Happens Before

Given any two evaluations A and B…

If A happens before B:

78



Copyright (C) 2018 NVIDIA Corporation

Happens Before

Given any two evaluations A and B…

If A happens before B:

A is sequenced before B, or

79



Copyright (C) 2018 NVIDIA Corporation

Happens Before

Given any two evaluations A and B…

If A happens before B:

A is sequenced before B, or

A synchronizes with B, or

80



Copyright (C) 2018 NVIDIA Corporation

Happens Before

Given any two evaluations A and B…

If A happens before B:

A is sequenced before B, or

A synchronizes with B, or

For some evaluation X, A happens before X and X 

happens before B.

[intro.races] p7, p8, p9, p10

81

http://eel.is/c++draft/intro.races#7
http://eel.is/c++draft/intro.races#8
http://eel.is/c++draft/intro.races#9
http://eel.is/c++draft/intro.races#10


Copyright (C) 2018 NVIDIA Corporation

Happens Before

Happens before doesn’t mean happened before.

82



Copyright (C) 2018 NVIDIA Corporation

int x = 0;

int y = 0;

void foo()
{
x = y + 1;
y = 1;

}

// GCC 8.2 –O3 x86-64

x:
.zero 4

y:
.zero 4

foo():
movl y(%rip), %eax
movl $1, y(%rip)
addl $1, %eax
movl %eax, x(%rip)
ret

Happens Before

Source: Preshing on Programming 83

http://preshing.com/20130702/the-happens-before-relation/


Copyright (C) 2018 NVIDIA Corporation

Happens Before

Happens before doesn’t mean happened before.

Happening before doesn’t mean happens before.

84



Copyright (C) 2018 NVIDIA Corporation

Happens Before

std::atomic<bool> ready = false;
int data = 0;

std::thread producer(
[&] {
data = 42;
ready.store(true, memory_order_relaxed);

});

std::thread consumer(
[&] {
if (ready.load(memory_order_relaxed))

std::cout << data;
});

Source: Preshing on Programming 85

http://preshing.com/20130702/the-happens-before-relation/


Copyright (C) 2018 NVIDIA Corporation

Happens Before

Happens before describes arbitrary concatenations 

of sequenced before and synchronizes with.

Atomic

Acquire

Release

Mutex

Lock

Unlock

…

Sequenced Before

(within a thread)

Synchronizes With

(between threads)

Happens Before

Consequence of 

program order

86



Copyright (C) 2018 NVIDIA Corporation

Execution Steps

The evaluations executed by threads are delineated by 

execution steps.

[intro.progress] p3

87

http://eel.is/c++draft/intro.progress#3


Copyright (C) 2018 NVIDIA Corporation

Execution Steps

The evaluations executed by threads are delineated by 

execution steps.

[intro.progress] p3

An execution step is:

Termination of the thread.

88

http://eel.is/c++draft/intro.progress#3


Copyright (C) 2018 NVIDIA Corporation

Execution Steps

The evaluations executed by threads are delineated by 

execution steps.

[intro.progress] p3

An execution step is:

Termination of the thread.

An access of a volatile object.

89

http://eel.is/c++draft/intro.progress#3


Copyright (C) 2018 NVIDIA Corporation

Execution Steps

The evaluations executed by threads are delineated by 

execution steps.

[intro.progress] p3

An execution step is:

Termination of the thread.

An access of a volatile object.

Completion of:

A library I/O function call.

90

http://eel.is/c++draft/intro.progress#3


Copyright (C) 2018 NVIDIA Corporation

Execution Steps

The evaluations executed by threads are delineated by 

execution steps.

[intro.progress] p3

An execution step is:

Termination of the thread.

An access of a volatile object.

Completion of:

A library I/O function call.

A synchronization operation.

91

http://eel.is/c++draft/intro.progress#3


Copyright (C) 2018 NVIDIA Corporation

Execution Steps

The evaluations executed by threads are delineated by 

execution steps.

[intro.progress] p3

An execution step is:

Termination of the thread.

An access of a volatile object.

Completion of:

A library I/O function call.

A synchronization operation.

An atomic operation.

92

http://eel.is/c++draft/intro.progress#3


Copyright (C) 2018 NVIDIA Corporation

Forward Progress

Some atomic operations may fail spuriously due to 

interference from other threads.

Implementations are encouraged, but not required, to 

prevent spurious failures from indefinitely delaying 

progress.

[intro.progress] p2.2

93

http://eel.is/c++draft/intro.progress#2.2


Copyright (C) 2018 NVIDIA Corporation

Forward Progress

Block: Wait for a condition to be satisfied before 

continuing execution.

[defns.block]

94

http://eel.is/c++draft/defns.block


Copyright (C) 2018 NVIDIA Corporation

Forward Progress

Blocking library functions are considered to 

continuously execute execution steps while waiting for 

their condition to be satisfied.

Thus, blocking makes progress.

…
Check

condition

false

true
Done

95



Copyright (C) 2018 NVIDIA Corporation

Forward Progress

Forward progress guarantees that something 

observable should eventually happens.

96



Copyright (C) 2018 NVIDIA Corporation

Execution Steps

Implementations may assume that all threads will 

eventually perform an execution step.

[intro.progress] p1

97

http://eel.is/c++draft/basic.exec#intro.progress-1


Copyright (C) 2018 NVIDIA Corporation

Execution Steps

Implementations may assume that all threads will 

eventually perform an execution step.

[intro.progress] p1

AKA infinite loops that have no observable effects are 

undefined behavior.

98

http://eel.is/c++draft/basic.exec#intro.progress-1


Copyright (C) 2018 NVIDIA Corporation

Forward Progress

Three classes of forward progress guarantees:

Concurrent forward progress.

Parallel forward progress.

Weakly parallel forward progress.

99



Copyright (C) 2018 NVIDIA Corporation

Forward Progress

Concurrent forward progress: The thread will make 

progress, regardless of whether other threads are 

making progress.

[intro.progress] p7

100

http://eel.is/c++draft/intro.progress#7


Copyright (C) 2018 NVIDIA Corporation

Forward Progress

Concurrent forward progress example:

Preemptive OS thread scheduling.

Unbounded thread pool.

Source: P0072 101

https://wg21.link/P0072


Copyright (C) 2018 NVIDIA Corporation

Forward Progress

Parallel forward progress: Once the thread has 

executed its first execution step, the thread will make 

progress.

[intro.progress] p9

102

http://eel.is/c++draft/intro.progress#9


Copyright (C) 2018 NVIDIA Corporation

Forward Progress

Parallel forward progress example:

Run-to-completion userspace tasking.

Bounded thread pool.

Threads on modern NVIDIA GPUs.

Source: P0072 103

https://wg21.link/P0072


Copyright (C) 2018 NVIDIA Corporation

Forward Progress

Weakly parallel forward progress: The thread is not 

guaranteed to make progress.

[intro.progress] p11

104

http://eel.is/c++draft/intro.progress#11


Copyright (C) 2018 NVIDIA Corporation

Forward Progress

Weakly parallel forward progress example:

Non-preemptive OS thread scheduling.

Suspendable userspace tasking.

Work-stealing task schedulers.

Fibers.

Threadless asynchrony.

Lazy execution.

C++ coroutines.

Threads on legacy GPUs.

Source: P0072 105

https://wg21.link/P0072


Copyright (C) 2018 NVIDIA Corporation

Forward Progress

Which guarantee does the main thread make?

[intro.progress] p8

106

http://eel.is/c++draft/intro.progress#8


Copyright (C) 2018 NVIDIA Corporation

Forward Progress

Which guarantee does the main thread make?

Implementation defined.

[intro.progress] p8

107

http://eel.is/c++draft/intro.progress#8


Copyright (C) 2018 NVIDIA Corporation

Forward Progress

Which guarantee do std::threads make?

[intro.progress] p8

108

http://eel.is/c++draft/intro.progress#8


Copyright (C) 2018 NVIDIA Corporation

Forward Progress

Which guarantee do std::threads make?

Implementation defined.

[intro.progress] p8

109

http://eel.is/c++draft/intro.progress#8


Copyright (C) 2018 NVIDIA Corporation

Boost Blocking

Boost Blocking: Block on a thread with weaker forward 

progress while preserving the calling thread’s forward 

progress.

[intro.progress] p14

110

http://eel.is/c++draft/intro.multithread#intro.progress-14


Copyright (C) 2018 NVIDIA Corporation

Boost Blocking

When a thread P boost blocks on a set S of other 

threads, the forward progress guarantees of at least 

one of the threads in S is temporarily upgraded to P’s 

forward progress guarantee. Repeat until the blocking 

condition is satisfied.

[intro.progress] p14

111

http://eel.is/c++draft/intro.multithread#intro.progress-14


Copyright (C) 2018 NVIDIA Corporation

Boost Blocking

Boost blocking ensures your children threads make 

progress, not your siblings.

112



Copyright (C) 2018 NVIDIA Corporation

Boost Blocking

struct lazy_thread {
function<void()> f;

void join() {
if (f) {

// Boost block by running the thread in the
// calling thread.
f();
f = function<void()>{};

} else {
throw make_error_code(errc::invalid_argument);

}
}

};

113



Copyright (C) 2018 NVIDIA Corporation

Boost Blocking

while (!empty && !done) {
auto f = pop_next();
f();

}

…

114



Copyright (C) 2018 NVIDIA Corporation

Boost Blocking

while (!empty && !done) {
auto f = pop_next();
f();

}

…

115



Copyright (C) 2018 NVIDIA Corporation

Boost Blocking

while (!empty && !done) {
auto f = pop_next();
f();

}

…

116



Copyright (C) 2018 NVIDIA Corporation

Boost Blocking

static_thread_pool pool(…);

auto task = pool.execute_async(

);

117



Copyright (C) 2018 NVIDIA Corporation

Boost Blocking

static_thread_pool pool(…);

auto task = pool.execute_async(
[&] {

}
);

118



Copyright (C) 2018 NVIDIA Corporation

Boost Blocking

static_thread_pool pool(…);

auto task = pool.execute_async(
[&] {

auto child0 = pool.execute_async(…);
auto child1 = pool.execute_async(…);
…
child0.join();
child1.join();

}
);

119



Copyright (C) 2018 NVIDIA Corporation

Boost Blocking

static_thread_pool pool(1);

auto task = pool.execute_async(
[&] {

auto child0 = pool.execute_async(…);
auto child1 = pool.execute_async(…);
…
child0.join();
child1.join();

}
);

120



Copyright (C) 2018 NVIDIA Corporation

Summary

C++ Execution Model:

Threads evaluate expressions that access and 

modify flat storage.

Evaluation within a thread is driven by sequenced 

before relations.

Interactions between threads is driven by 

synchronizes with relations.

Forward progress promises eventual termination.

121



Copyright (C) 2018 NVIDIA Corporation

Caveats

C++17 and beyond

122



Copyright (C) 2018 NVIDIA Corporation

Caveats

std::memory_order_consume

123



Copyright (C) 2018 NVIDIA Corporation

Caveats

std::memory_order_consume

124



Copyright (C) 2018 NVIDIA Corporation

Summary

C++ Execution Model:

Threads evaluate expressions that access and 

modify flat storage.

Evaluation within a thread is driven by sequenced 

before relations.

Interactions between threads is driven by 

synchronizes with relations.

Forward progress promises eventual termination.

125

@blelbach


