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The Abstract Machine

The C++ abstract machine is a portable abstraction of 

your operating system, kernel and hardware.

2



Copyright (C) 2018 NVIDIA Corporation

The Abstract Machine

The C++ abstract machine is a portable abstraction of 

your operating system, kernel and hardware.

The abstract machine is the intermediary between your 

C++ program and the system that it is run on.
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The Abstract Machine

int main()
{
std::thread t(f);

// ...
}
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The Abstract Machine

Source: anandtech.com, intel.com, cs.cmu.edu, slideshare.net
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https://images.anandtech.com/doci/9193/IntelE7systemarchitecture_575px.png
https://software.intel.com/sites/default/files/managed/44/00/processor-block-diagram-figure-1.png
http://15418.courses.cs.cmu.edu/spring2017content/lectures/03_progmodels/images/slide_023.jpg
https://www.slideshare.net/ptc1760/processes-threads-inwindowsvista
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The Abstract Machine

Storage

Threads
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int main()
{

std::thread t(f);

// ...
}
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The Abstract Machine

C++ programs describe operations that are performed 

on the abstract machine.

C++ implementations define the characteristics of the 

abstract machine and translate operations on the 

abstract machine into operations on the system.
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The Abstract Machine

Storage

Threads
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Storage Model

Storage is flat; no notion hierarchy (caches, etc).

Objects reside in storage at a single memory location.

[intro.object] p9
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http://eel.is/c++draft/basic.memobj#intro.object-9
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Storage Model

Some objects may not have a unique memory location.

Eligible empty base classes.

Objects marked [[no_unique_address]].

[intro.object] p7
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http://eel.is/c++draft/basic.memobj#intro.object-7
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Storage Model

An implementation is allowed to store two objects at 

the same machine address or not store an object at all.

[basic.memobj] footnote 32
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http://eel.is/c++draft/basic.memobj#footnote-32
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Storage Model

An object cannot have more than one memory location.
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Storage Model

struct A {
X x;

X& X::operator=(X const& rhs)
{

if (&rhs == this) return *this;
auto newx = new X(*rhs.x);
delete x;
x = newx;
return *this;

}
};
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Storage Model

Every thread in a program can potentially access every 

object and function in a program.
[intro.multithread] p1 s2
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http://eel.is/c++draft/intro.multithread#1.sentence-2
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Storage Model

Process 0

Main Memory
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15



Copyright (C) 2018 NVIDIA Corporation

Storage Model
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Storage Model
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Storage Model
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Storage Model
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Storage Model

Process 0

PU0 Memory

PU0 PU1

Virtual Memory

Process

Memory

PU1 Memory

20



Copyright (C) 2018 NVIDIA Corporation

Threads of Execution

A thread of execution is a single flow of control in a 

program which evaluates a function call; threads may 

run concurrently.
[intro.multithread] p1 s1
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http://eel.is/c++draft/intro.multithread#1.sentence-1
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Threads of Execution

A thread of execution is a single flow of control in a 

program which evaluates a function call; threads may 

run concurrently.
[intro.multithread] p1 s1

Main Thread of Execution

Evaluate main()

22

http://eel.is/c++draft/intro.multithread#1.sentence-1
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Threads of Execution

A thread of execution is a single flow of control in a 

program which evaluates a function call; threads may 

run concurrently.
[intro.multithread] p1 s1

Main Thread of Execution

Evaluate main()

std::thread t(f);

Evaluate f()

23

http://eel.is/c++draft/intro.multithread#1.sentence-1
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Threads of Execution

Variables with static storage duration are initialized as 

a consequence of program initiation. Variables with 

thread storage duration are initialized as a 

consequence of thread execution.
[basic.start.static] p1

Main Thread of Execution

Static storage initialization

Evaluate main()

Static storage destruction

std::thread t(f);

Evaluate f()

24

http://eel.is/c++draft/basic.start#static-1
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Threads of Execution

Variables with static storage duration are initialized as 

a consequence of program initiation. Variables with 

thread storage duration are initialized as a 

consequence of thread execution.
[basic.start.static] p1

Main Thread of Execution

Static storage initialization

Thread storage initialization

Evaluate main()
Thread storage destruction

Static storage destruction

std::thread t(f);

Thread storage initialization

Evaluate f()
Thread storage destruction

25

http://eel.is/c++draft/basic.start#static-1
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Threads of Execution

Okay, so threads evaluate a function call.

What does it mean to evaluate a function call?

26
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Expressions

An expression is a sequence of operators and operands 

that specifies a computation.

[expr.pre] p1 s2

f();
f(a, b);

a + b;
// `operator+(a, b)` call.

T a = 2;
T a(2);
// `T::T(int)` call.

27

http://eel.is/c++draft/expr.pre#1.sentence-2
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Expressions

Subexpressions are a part of a larger expression.

[intro.execution] p3, p4

T a = (*f)(a + b, c);

T::T call

(*f) a + b c

(*f)(a + b, c);

28

http://eel.is/c++draft/intro.execution#3
http://eel.is/c++draft/intro.execution#4
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Expressions

Full expressions are not subexpressions.

[intro.execution] p5

if (a == T()) { … }
// Full expression includes:
// lvalue-to-rvalue conversion
// T-to-bool conversion
// operator==(T, T) call

29

http://eel.is/c++draft/intro.execution#5
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Expressions

Full expressions are not subexpressions.

[intro.execution] p5

if (a == T()) { … }
// Full expression includes:
// lvalue-to-rvalue conversion
// T-to-bool conversion
// operator==(T, T) call

{
T b;

} // Full expression: T::~T

30

http://eel.is/c++draft/intro.execution#5
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Expressions

Full expressions may include subexpressions that are not 

lexically part of the expression.

[intro.execution] p6

void f(T a = g());

f();
// Full expression includes:
// g call
// T::T call
// f call

31

http://eel.is/c++draft/basic.exec#intro.execution-6
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Evaluations

Evaluation of an expression includes value computations

and the initiation of side effects.

[intro.execution] p7 s2
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http://eel.is/c++draft/intro.execution#7.sentence-2
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Evaluations

Side effects change the environment:

33
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Evaluations

Side effects change the environment:

Reading a volatile object or modifying any object.
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Evaluations

Side effects change the environment:

Reading a volatile object or modifying any object.

Calling a library I/O function.
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Evaluations

Side effects change the environment:

Reading a volatile object or modifying any object.

Calling a library I/O function.

Calling a function that does any of the above.

[intro.execution] p7 s1
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http://eel.is/c++draft/intro.execution#7.sentence-1
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Evaluations

int a;
int b;
a = a + b;

cout << a * a;

foo(a + b);

37
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Evaluations

Value computations are pure and have no observable 

effect.

[intro.execution] p7 s2
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http://eel.is/c++draft/intro.execution#7.sentence-2
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Evaluations

Completion of the execution of an evaluation does not 

imply completion of its side effects.

[intro.execution] p7 s3
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http://eel.is/c++draft/intro.execution#7.sentence-3
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Evaluations

cout << a * a;

40
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Sequenced Before

Given any two evaluations A and B within the same 

thread of execution, if A is sequenced before B, then 

the execution of A shall precede the execution of B.

[intro.execution] p8 s2

41

http://eel.is/c++draft/intro.execution#8.sentence-2
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Sequenced Before

The sequenced before relationship is…

Asymmetric: A is sequenced before B does not 

imply that B is sequenced before A.

[intro.execution] p8 s1

Transitive: If A is sequenced before B and B is 

sequenced before C, then A is sequenced before C.

[intro.execution] p8 s1

42

http://eel.is/c++draft/intro.execution#8.sentence-1
http://eel.is/c++draft/intro.execution#8.sentence-1
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Sequenced Before

Each full expression is sequenced before the next full 

expression in program order.

[intro.execution] p9

a;
b;
// a sequenced before b

43

http://eel.is/c++draft/intro.execution#9
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Sequenced Before

If A and B are indeterminately sequenced, then either A 

is sequenced before B or B is sequenced before A, but 

it is unspecified which. E.g. A and B are not 

interleaved.

[intro.execution] p8 s4

44

http://eel.is/c++draft/intro.execution#8.sentence-4
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Sequenced Before

If A and B are unsequenced, then A is not sequenced 

before B and B is not sequenced before A. E.g. A and B 

may be interleaved.

[intro.execution] p8 s3

45

http://eel.is/c++draft/intro.execution#8.sentence-3
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Sequenced Before

a

b

a

b

b

a

a

b

b

a

a

b

A is sequenced before B

A and B are

indeterminately sequenced

A and B are

unsequenced

b

a
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Sequenced Before

constexpr float a = // ...
std::vector<float> x = // ...
std::vector<float> y = // ...

std::for_loop(
std::execution::seq,
0, x.size(),
[&] (int i) {
y[i] += a * x[i];

}
);

load y[i]

load x[i]

fma a * x[i] + y[i]

store y[i]

load y[i+1]

load x[i+1]

fma a * x[i+1] + y[i+1]

store y[i+1]

load y[i+2]

load x[i+2]

fma a * x[i+2] + y[i+2]

store y[i+2]

load y[i+3]

load x[i+3]

fma a * x[i+3] + y[i+2]

store y[i+3]
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Sequenced Before

constexpr float a = // ...
std::vector<float> x = // ...
std::vector<float> y = // ...

std::for_loop(
std::execution::unseq,
0, x.size(),
[&] (int i) {
y[i] += a * x[i];

}
);

load y[i]

load y[i+1]

load y[i+2]

load y[i+3]

load x[i]

load x[i+1]

load x[i+2]

load x[i+3]

fma a * x[i] + y[i]

fma a * x[i+1] + y[i+1]

fma a * x[i+2] + y[i+2]

fma a * x[i+3] + y[i+2]

store y[i]

store y[i+1]

store y[i+2]

store y[i+3]
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Sequenced Before

constexpr float a = // ...
std::vector<float> x = // ...
std::vector<float> y = // ...

std::for_loop(
std::execution::unseq,
0, x.size(),
[&] (int i) {
y[i] += a * x[i];

}
);

vload y[i:i+3]

vload x[i:i+3]

vfma a * x[i:i+3] + y[i:i+3]

vstore y[i:i+3]
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Statements

Statements are compositions of full expressions.

50
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Statements

Statements are compositions of full expressions.

{
statement0;
statement1;
// `statement0` is

// sequenced before

// `statement1`.

}
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Statements

Statements are compositions of full expressions.

{
statement0;
statement1;
// `statement0` is

// sequenced before

// `statement1`.

}

if (condition)
body;

// `condition` is

// sequenced before

// `body`.
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Statements

Statements are compositions of full expressions.

{
statement0;
statement1;
// `statement0` is

// sequenced before

// `statement1`.

}

if (condition)
body;

// `condition` is

// sequenced before

// `body`.

while (condition)
body;

// Each evaluation of `condition`

// is sequenced before each

// evaluation of `body`.

53
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Function Evaluation

When calling a function…

1. Every evaluation within the function and every evaluation not 

within the function are indeterminately sequenced.

[intro.execution] p11 s2

54

http://eel.is/c++draft/basic.exec#intro.execution-11.sentence-2
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Function Evaluation

When calling a function…

1. Every evaluation within the function and every evaluation not 

within the function are indeterminately sequenced.

[intro.execution] p11 s2

2. The expression designating the function is sequenced before

the argument expressions.

[expr.call] p8 s1

55

http://eel.is/c++draft/basic.exec#intro.execution-11.sentence-2
http://eel.is/c++draft/expr#call-8.sentence-1
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Function Evaluation

When calling a function…

1. Every evaluation within the function and every evaluation not 

within the function are indeterminately sequenced.

[intro.execution] p11 s2

2. The expression designating the function is sequenced before

the argument expressions.

[expr.call] p8 s1

3. Each argument expression is indeterminately sequenced with 

all other argument expressions. 

[expr.call] p8 s2

56

http://eel.is/c++draft/basic.exec#intro.execution-11.sentence-2
http://eel.is/c++draft/expr#call-8.sentence-1
http://eel.is/c++draft/expr#call-8.sentence-2
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Function Evaluation

When calling a function…

1. Every evaluation within the function and every evaluation not 

within the function are indeterminately sequenced.

[intro.execution] p11 s2

2. The expression designating the function is sequenced before

the argument expressions.

[expr.call] p8 s1

3. Each argument expression is indeterminately sequenced with 

all other argument expressions. 

[expr.call] p8 s2

4. Every expression in the body of the function is sequenced 

after the expression designating the function and every 

argument expression of the function .

[intro.execution] p11 s1

57

http://eel.is/c++draft/basic.exec#intro.execution-11.sentence-2
http://eel.is/c++draft/expr#call-8.sentence-1
http://eel.is/c++draft/expr#call-8.sentence-2
http://eel.is/c++draft/basic.exec#intro.execution-11.sentence-1
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Function Evaluation

void b(…) { e; }

g(a, (b)(c, d), f);
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Function Evaluation

a and e are indeterminately sequenced (Rule 1)

f and e are indeterminately sequenced (Rule 1)

void b(…) { e; }

g(a, (b)(c, d), f);
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Function Evaluation

a and e are indeterminately sequenced (Rule 1)

f and e are indeterminately sequenced (Rule 1)

(b) is sequenced before c and d (Rule 2)

void b(…) { e; }

g(a, (b)(c, d), f);
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Function Evaluation

a and e are indeterminately sequenced (Rule 1)

f and e are indeterminately sequenced (Rule 1)

(b) is sequenced before c and d (Rule 2)

c and d are indeterminately sequenced (Rule 3)

void b(…) { e; }

g(a, (b)(c, d), f);
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Function Evaluation

a and e are indeterminately sequenced (Rule 1)

f and e are indeterminately sequenced (Rule 1)

(b) is sequenced before c and d (Rule 2)

c and d are indeterminately sequenced (Rule 3)

c and d are sequenced before e (Rule 4)

void b(…) { e; }

g(a, (b)(c, d), f);
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Function Evaluation

a and e are indeterminately sequenced (Rule 1)

f and e are indeterminately sequenced (Rule 1)

(b) is sequenced before c and d (Rule 2)

c and d are indeterminately sequenced (Rule 3)

c and d are sequenced before e (Rule 4)

a – f are sequenced before the body of g (Rule 2)

void b(…) { e; }

g(a, (b)(c, d), f);
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Initializer Lists

Each element of a brace initializer is sequenced before 

the all subsequent elements.

[dcl.init] p17

64

http://eel.is/c++draft/dcl.init#17


Copyright (C) 2018 NVIDIA Corporation

Construction

struct A {
A(int i) { cout << i; }

};

tuple t0 ( A(0), A(1) ) ;

tuple t1 { A(0), A(1) } ;
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Construction

struct A {
A(int i) { cout << i; }

};

tuple t0 ( A(0), A(1) ) ;
// GCC 8:  “10”

tuple t1 { A(0), A(1) } ;
// GCC 8:  “01”
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Construction

struct A {
A(int i) { cout << i; }

};

tuple t0 ( A(0), A(1) ) ;
// GCC 8:  “10”
// LLVM 7: “01”

tuple t1 { A(0), A(1) } ;
// GCC 8:  “01”
// LLVM 7: “01”
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Operator Evaluation

The value computations (but not the side effects) of an 

operator are sequenced before the value computations

(but not the side effects) of its operands.

[intro.execution] p10 s2

68

http://eel.is/c++draft/basic.exec#intro.execution-10.sentence-2
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Operator Evaluation

The operand expressions to the following operators 

are sequenced left to right:

E1 && E2 [expr.log.and] p2 s2

E1 || E2 [expr.log.or] p2 s2

E1 << E2 and E1 >> E2 [expr.shift] p4

E1, E2 [expr.comma] p1 s3

E1[E2] [expr.sub] p1 s6

E1.*E2 and E1->*E2 [expr.mptr.oper] p3 s3

69

http://eel.is/c++draft/expr#log.and-2.sentence-2
http://eel.is/c++draft/expr#log.or-2.sentence-2
http://eel.is/c++draft/expr#shift-4
http://eel.is/c++draft/expr#comma-1.sentence-3
http://eel.is/c++draft/expr#sub-1.sentence-6
http://eel.is/c++draft/expr#mptr.oper-4.sentence-3
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Operator Evaluation

The operands expressions to the following operators 

operators are sequenced right to left:

E2 = E1 and E2 @= E1 [expr.ass] p1 s5

70

http://eel.is/c++draft/expr#ass-1.sentence-5
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Synchronizes With

Two library operations A and B may be related by the 

synchronizes with relation.

[intro.races] p6

72

http://eel.is/c++draft/intro.races#6.sentence-1
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Synchronizes With

Asymmetric: A synchronizes with B does not imply 

that B synchronizes with A.
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Synchronizes With

Ways to achieve synchronizes with:

Atomic acquire/release.

Mutex lock/unlock.

Thread create/join.

Future/promise.

Parallel algorithm fork/join.
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Synchronizes With

T data = // ...
atomic<bool> r(false);

data = ...
r.store(1, memory_order_release);

if (r.load(memory_order_acquire)) {
T tmp = data;
// ...

}

Synchronizes with

75
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Synchronizes With

T data = // ...
atomic<bool> r(false);

data = ...
r.store(1, memory_order_release);

if (r.load(memory_order_acquire)) {
T tmp = data;
// ...

}

Synchronizes with

No

synchronizes with

data = ...
r.store(1, memory_order_release);

if (r.load(memory_order_acquire)) {
T tmp = data;
// ...

}

76
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Synchronizes With

T data = // ...
std::mutex mtx;

{ std::lock_guard l(mtx); // Lock
T tmp = data;
// ...

}                         // Unlock

{ std::lock_guard l(mtx); // Lock
T tmp = data;
// ...

}                         // Unlock

{ std::lock_guard l(mtx); // Lock
T tmp = data;
// ...

}                         // Unlock

Synchronizes

with

77
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Happens Before

Given any two evaluations A and B…

If A happens before B:
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Happens Before

Given any two evaluations A and B…

If A happens before B:

A is sequenced before B, or
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Happens Before

Given any two evaluations A and B…

If A happens before B:

A is sequenced before B, or

A synchronizes with B, or
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Happens Before

Given any two evaluations A and B…

If A happens before B:

A is sequenced before B, or

A synchronizes with B, or

For some evaluation X, A happens before X and X 

happens before B.

[intro.races] p7, p8, p9, p10

81

http://eel.is/c++draft/intro.races#7
http://eel.is/c++draft/intro.races#8
http://eel.is/c++draft/intro.races#9
http://eel.is/c++draft/intro.races#10
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Happens Before

Happens before doesn’t mean happened before.
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int x = 0;

int y = 0;

void foo()
{
x = y + 1;
y = 1;

}

// GCC 8.2 –O3 x86-64

x:
.zero 4

y:
.zero 4

foo():
movl y(%rip), %eax
movl $1, y(%rip)
addl $1, %eax
movl %eax, x(%rip)
ret

Happens Before

Source: Preshing on Programming 83

http://preshing.com/20130702/the-happens-before-relation/
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Happens Before

Happens before doesn’t mean happened before.

Happening before doesn’t mean happens before.
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Happens Before

std::atomic<bool> ready = false;
int data = 0;

std::thread producer(
[&] {
data = 42;
ready.store(true, memory_order_relaxed);

});

std::thread consumer(
[&] {
if (ready.load(memory_order_relaxed))

std::cout << data;
});

Source: Preshing on Programming 85

http://preshing.com/20130702/the-happens-before-relation/
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Happens Before

Happens before describes arbitrary concatenations 

of sequenced before and synchronizes with.

Atomic

Acquire

Release

Mutex

Lock

Unlock

…

Sequenced Before

(within a thread)

Synchronizes With

(between threads)

Happens Before

Consequence of 

program order
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Execution Steps

The evaluations executed by threads are delineated by 

execution steps.

[intro.progress] p3

87

http://eel.is/c++draft/intro.progress#3
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Execution Steps

The evaluations executed by threads are delineated by 

execution steps.

[intro.progress] p3

An execution step is:

Termination of the thread.

88

http://eel.is/c++draft/intro.progress#3
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Execution Steps

The evaluations executed by threads are delineated by 

execution steps.

[intro.progress] p3

An execution step is:

Termination of the thread.

An access of a volatile object.
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Execution Steps

The evaluations executed by threads are delineated by 

execution steps.

[intro.progress] p3

An execution step is:

Termination of the thread.

An access of a volatile object.

Completion of:

A library I/O function call.
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Execution Steps

The evaluations executed by threads are delineated by 

execution steps.

[intro.progress] p3

An execution step is:

Termination of the thread.

An access of a volatile object.

Completion of:

A library I/O function call.

A synchronization operation.
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Execution Steps

The evaluations executed by threads are delineated by 

execution steps.

[intro.progress] p3

An execution step is:

Termination of the thread.

An access of a volatile object.

Completion of:

A library I/O function call.

A synchronization operation.

An atomic operation.
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Forward Progress

Some atomic operations may fail spuriously due to 

interference from other threads.

Implementations are encouraged, but not required, to 

prevent spurious failures from indefinitely delaying 

progress.

[intro.progress] p2.2
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Forward Progress

Block: Wait for a condition to be satisfied before 

continuing execution.

[defns.block]
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Forward Progress

Blocking library functions are considered to 

continuously execute execution steps while waiting for 

their condition to be satisfied.

Thus, blocking makes progress.

…
Check

condition

false

true
Done
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Forward Progress

Forward progress guarantees that something 

observable should eventually happens.
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Execution Steps

Implementations may assume that all threads will 

eventually perform an execution step.

[intro.progress] p1
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Execution Steps

Implementations may assume that all threads will 

eventually perform an execution step.

[intro.progress] p1

AKA infinite loops that have no observable effects are 

undefined behavior.
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Forward Progress

Three classes of forward progress guarantees:

Concurrent forward progress.

Parallel forward progress.

Weakly parallel forward progress.
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Forward Progress

Concurrent forward progress: The thread will make 

progress, regardless of whether other threads are 

making progress.

[intro.progress] p7
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Forward Progress

Concurrent forward progress example:

Preemptive OS thread scheduling.

Unbounded thread pool.

Source: P0072 101

https://wg21.link/P0072


Copyright (C) 2018 NVIDIA Corporation

Forward Progress

Parallel forward progress: Once the thread has 

executed its first execution step, the thread will make 

progress.

[intro.progress] p9
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Forward Progress

Parallel forward progress example:

Run-to-completion userspace tasking.

Bounded thread pool.

Threads on modern NVIDIA GPUs.

Source: P0072 103

https://wg21.link/P0072
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Forward Progress

Weakly parallel forward progress: The thread is not 

guaranteed to make progress.

[intro.progress] p11

104

http://eel.is/c++draft/intro.progress#11


Copyright (C) 2018 NVIDIA Corporation

Forward Progress

Weakly parallel forward progress example:

Non-preemptive OS thread scheduling.

Suspendable userspace tasking.

Work-stealing task schedulers.

Fibers.

Threadless asynchrony.

Lazy execution.

C++ coroutines.

Threads on legacy GPUs.

Source: P0072 105

https://wg21.link/P0072
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Forward Progress

Which guarantee does the main thread make?

[intro.progress] p8
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Forward Progress

Which guarantee does the main thread make?

Implementation defined.

[intro.progress] p8
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Forward Progress

Which guarantee do std::threads make?

[intro.progress] p8
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Forward Progress

Which guarantee do std::threads make?

Implementation defined.

[intro.progress] p8
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Boost Blocking

Boost Blocking: Block on a thread with weaker forward 

progress while preserving the calling thread’s forward 

progress.

[intro.progress] p14
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Boost Blocking

When a thread P boost blocks on a set S of other 

threads, the forward progress guarantees of at least 

one of the threads in S is temporarily upgraded to P’s 

forward progress guarantee. Repeat until the blocking 

condition is satisfied.

[intro.progress] p14
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Boost Blocking

Boost blocking ensures your children threads make 

progress, not your siblings.
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Boost Blocking

struct lazy_thread {
function<void()> f;

void join() {
if (f) {

// Boost block by running the thread in the
// calling thread.
f();
f = function<void()>{};

} else {
throw make_error_code(errc::invalid_argument);

}
}

};
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Boost Blocking

while (!empty && !done) {
auto f = pop_next();
f();

}

…
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Boost Blocking

while (!empty && !done) {
auto f = pop_next();
f();

}

…

115



Copyright (C) 2018 NVIDIA Corporation

Boost Blocking

while (!empty && !done) {
auto f = pop_next();
f();

}

…
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Boost Blocking

static_thread_pool pool(…);

auto task = pool.execute_async(

);
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Boost Blocking

static_thread_pool pool(…);

auto task = pool.execute_async(
[&] {

}
);
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Boost Blocking

static_thread_pool pool(…);

auto task = pool.execute_async(
[&] {

auto child0 = pool.execute_async(…);
auto child1 = pool.execute_async(…);
…
child0.join();
child1.join();

}
);
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Boost Blocking

static_thread_pool pool(1);

auto task = pool.execute_async(
[&] {

auto child0 = pool.execute_async(…);
auto child1 = pool.execute_async(…);
…
child0.join();
child1.join();

}
);
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Summary

C++ Execution Model:

Threads evaluate expressions that access and 

modify flat storage.

Evaluation within a thread is driven by sequenced 

before relations.

Interactions between threads is driven by 

synchronizes with relations.

Forward progress promises eventual termination.
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Caveats

C++17 and beyond
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Caveats

std::memory_order_consume
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Caveats

std::memory_order_consume
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Summary

C++ Execution Model:

Threads evaluate expressions that access and 

modify flat storage.

Evaluation within a thread is driven by sequenced 

before relations.

Interactions between threads is driven by 

synchronizes with relations.

Forward progress promises eventual termination.
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