
𝐂 +++++ + ⋯
Saar Raz • saar@raz.email

Riddle (props to Ben Deane)

▪ Write a C++ program with the longest sequence of keywords

Riddle (props to Ben Deane)

▪ Write a C++ program with the longest sequence of keywords

▪ Easy:
long long long long long long long … int x = 0;

Riddle

▪ Solution (11 keywords)
static inline thread_local constexpr const volatile unsigned long long int bitand

But wait!

The Real Solution
▪ In C as well
▪ An unbounded amount of keywords:

The Real Solution
▪ In C as well
▪ An unbounded amount of keywords:

Is there a better one?
▪ We already have an unbounded no. of keywords

▪ What about an infinite amount?

The Question

▪ Does an infinite C++ program exist?
▪ Does: We’re gonna try and answer this
▪ An: One is enough
▪ Infinite: That contains an infinite number of characters.
▪ C++: A well-formed program, as defined by the standard
▪ Program: What is a program anyway?
▪ Exist: In the theoretical sense

C++
▪ C++ is an abstract term, but is (mostly) well-defined:

▪ ISO/IEC 14882:2017: Standard for Programming Language C++

C++
▪ C++ is an abstract term, but is (mostly) well-defined:

▪ ISO/IEC 14882:2017: Standard for Programming Language C++

▪ We don’t care about implementations, just if it’s part of ‘C++’

§[intro.scope]/1

This document specifies requirements for implementations of the C++ programming language.
The first such requirement is that they implement the language, so this document also

defines C++.
Other requirements and relaxations of the first requirement appear at various places within

this document.

Program
▪ Can a program be infinite?

▪ What is the definition of a program?

▪ Somewhat unclear…

Wikipedia can’t be trusted

▪ That’s what we have a standard for!

What does the standard have to say?

▪ But what is a program!?!?!?!?

▪ Awesome! There’s a standard for CS Vocabulary!

§[defns.well.formed]

C++ program constructed according to the syntax rules,
diagnosable semantic rules, and the one-definition rule

§[intro.refs]/1

The following documents are referred to in the text in such a way that some or all
of their content constitutes requirements of this document.

— […]

— […]

— ISO/IEC 2382 (all parts), Information technology — Vocabulary

— […]

▪ Neither ‘syntactic unit’ nor ‘syntax’ is defined…

ISO/IEC 2382

2121381
programming language

artificial language for expressing programs

2121372
program

computer program
syntactic unit that conforms to the rules of a particular
programming language and that is composed of
declarations and statements or instructions needed to
solve a certain function, task, or problem

Syntactic Unit?

Wikipedia can’t be trusted

▪ Wikipedia’s no standard!
▪ What does the standard have to say?

WHAT IS A PROGRAM?!?!

▪ Hey!

▪ OK, what’s a translation unit?

▪ It seems the number of declarations must be bounded…

▪ So each translation unit is finite

§[basic.link]/1

A program consists of one or more translation units
([lex]) linked together. […]

§[basic.link]/1

[…] A translation unit consists of a sequence of
declarations.

translation-unit:

declaration-seqopt

declaration-seq:

declaration

declaration-seqopt declaration

ℵ𝟎 > 𝟏!

Infinite translation units?

▪ The translation units have to be “linked together”…

▪ There’s no mention of a linking phase!

▪ Profit!
▪ But this is less interesting…

§[lex.phases]/3

[…] Implementations must behave as if these separate phases occur, although in practice different phases might be
folded together.

Parsing

▪ Damn – source files – and files are finite…

▪ Are they though?

§[lex.separate]

The text of the program is kept in units called source
files in this document. A source file together with all the
headers and source files included via the preprocessing
directive #include, less any source lines skipped by any of
the conditional inclusion preprocessing directives, is
called a translation unit. [ Note: A C++ program need not
all be translated at the same time. — end note ]

§[fs.general]/3

A file is an object within a file system that holds user or
system data. Files can be written to, or read from, or
both. A file has certain attributes, including type. File
types include […].

§[fs.general]/2

A file system is a collection of files and their attributes.

Parsing

▪ All tokens are defined using grammar rules…

§[lex.phases]/3

The precedence among the syntax rules of translation is specified by the following phases.6

1.Physical source file characters are mapped, in an implementation-defined manner, to the basic source character
set (introducing new-line characters for end-of-line indicators) if necessary. The set of physical source file characters
accepted is implementation-defined. […].

2.[…] A source file that is not empty and that does not end in a new-line character, or that ends in a new-line
character immediately preceded by a backslash character before any such splicing takes place, shall be processed as
if an additional new-line character were appended to the file.

3.The source file is decomposed into preprocessing tokens and sequences of white-space characters […]

4.Preprocessing directives are executed, […].

5. […]

6.Adjacent string literal tokens are concatenated.

7.White-space characters separating tokens are no longer significant. Each preprocessing token is converted into
a token. The resulting tokens are syntactically and semantically analyzed and translated as a translation unit. […]

Insignificant Whitespace

▪ So you can theoretically have infinite whitespace!

▪ Why is this interesting?

▪ Ordinals!

§[lex.token]/3

There are five kinds of tokens: identifiers, keywords, literals, operators, and other separators. Blanks, horizontal
and vertical tabs, newlines, formfeeds, and comments (collectively, “white space”), as described below, are
ignored except as they serve to separate tokens. [ Note: Some white space is required to separate otherwise
adjacent identifiers, keywords, numeric literals, and alternative tokens containing alphabetic characters. — end
note ]

Ordinals
▪ Generalization of the natural numbers

▪ “What’s the index of the element after all natural numbers?”

1,2,3,4,5, …
ℵ0

, ณ𝑎
𝜔

▪ These are called transfinite sequences – are they legal C++?

Ordinals
▪ Generalization of the natural numbers

▪ “What’s the index of the element after all natural numbers?”

1,2,3,4,5, …
ℵ0

, ณ𝑎
𝜔

▪ These are called transfinite sequences – are they legal C++?

▪ If so, you can have interesting stuff:

int main() {\n\n\n\n …
ℵ0

ณs
𝑐ℎ𝑎𝑟 #𝜔

td::cout << __LINE__; }

Ordinals
▪ Generalization of the natural numbers

▪ “What’s the index of the element after all natural numbers?”

1,2,3,4,5, …
ℵ0

, ณ𝑎
𝜔

▪ These are called transfinite sequences – are they legal C++?

▪ If so, you can have interesting stuff:

int main() {\n\n\n\n …
ℵ0

ณs
𝑐ℎ𝑎𝑟 #𝜔

td::cout << __LINE__; }

▪ But!

__LINE__

▪ an integer literal...

▪ So, an integer literal can’t represent an infinite ordinal…

▪ What if it was a float literal?

▪ Still no, as there is no float literal for infinity

§[cpp.predefined]/1/4

—__LINE__

The presumed line number (within the current source file) of the current source line (an integer literal).

§[lex.icon]

integer-literal:
binary-literal integer-suffixopt

octal-literal integer-suffixopt

decimal-literal integer-suffixopt

hexadecimal-literal integer-suffixopt

Presumed line number?
▪ Can we presume the line number is 0?

▪ The probability that the line number is 0 is exactly 0

Presumed line number!
n\n\n\n… \n\n\n\n… \n\n\n\n… ℵ 0 ℵ 0 ℵ ℵ 0 0 ℵ 0 \n\n\n\n… ℵ 0 \n 𝑐ℎ𝑎𝑟 #𝜔 \n
\n \n \n 𝑐ℎ𝑎𝑟 #𝜔 𝑐𝑐ℎ𝑎𝑎𝑟𝑟 #𝜔𝜔 \n 𝑐ℎ𝑎𝑟 #𝜔 #line 1\nstd::cout << __LINE__; }

▪ So, theoretically, you can have:

int main() { \n\n\n\n … \n\n\n\n … ℵ 0 ด\n
𝑐ℎ𝑎𝑟 #𝜔

#line 1\nstd::cout << __LINE__; }

▪ But there’s no interesting semantic meaning here…

§[cpp.line]

[…]

2 The line number of the current source line is one greater than the number of new-line characters read or
introduced in translation phase 1 while processing the source file to the current token.

3 A preprocessing directive of the form

#line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins with a source line that has a
line number as specified by the digit sequence (interpreted as a decimal integer). If the digit sequence specifies zero
or a number greater than 2147483647, the behavior is undefined.
[…]

Wait a minute…

▪ But! This clause is informative, so it is not really binding!

▪ And in fact, the number of TUs is not listed as a limitable
quantity…

Annex B (informative)
Implementation quantities §[implimits]

1 Because computers are finite, C++ implementations are inevitably limited in the size of the programs they can
successfully process. Every implementation shall document those limitations where known. This documentation
may cite fixed limits where they exist, say how to compute variable limits as a function of available resources, or say
that fixed limits do not exist or are unknown.

2 The limits may constrain quantities that include those described below or others. The bracketed number following
each quantity is recommended as the minimum for that quantity. However, these quantities are only guidelines
and do not determine compliance.

— […]

— […]

[…]

The Verdict
▪ A program with infinite TUs can be legal
▪ If you allow transfinite files:

▪ A transfinite file can be legal, but will not have any interesting
semantic meaning over a non-transfinite file.

▪ If not, only C++11 or higher allow infinite programs:

▪ int main() {} \n\n\n\n…

C++03 §[lex.phases]1/2

... If a source file that is not empty does not end in a new-
line character, or ends in a new-line character
immediately preceded by a backslash character before
any such splicing takes place, the behavior is undefined.

§[lex.phases]1/2

... A source file that is not empty and that does not end in
a new-line character, or that ends in a new-line character
immediately preceded by a backslash character before
any such splicing takes place, shall be processed as if an
additional new-line character were appended to the
file..

