
Getting an #include-s graph with a Clang Plugin

Who includes me?

Introduction

• WHAT?
Create a map of files dependencies in a project, by tracking and registering
the trail of header files inclusions
• WHY?

- When dealing with large projects, this information can be interesting, as it reveals
the project’s design

- It can also help in identifying redundant or bidirectional inclusions
- It can assist in evaluating the scope of the effects that a change made in a header file

will have on the project
• HOW?

A compiler plugin, that will give us hooks to the compiler’s work, in real-
time

Plugin’s Outline

Usually, a clang plugin implementation will include the following 3 parts:

1. The actual plugin – implementing the PluginASTAction interface
2. Events listener – overriding callback functions for the compilers events

- usually an ASTConsumer that implements logic that concerns the AST*
- in this case, the logic of the plugin will reside in a class implementing the

interface PPCallbacks
3. Registration of the plugin to Clang’s FrontendPluginRegistry

* Abstract Syntax Tree

MapHeadersFilesPlugin CompilerInstance

PluginASTAction

virtual std::unique_ptr<ASTConsumer>
CreateASTConsumer(...) = 0;

virtual bool ParseArgs(...) = 0;

PPCallbacks

virtual void FileChanged(...) override;

virtual void EndOfMainFile() override;

virtual void InclusionDirective(...) override;

virtual void FileSkipped(...) override;

FrontendPluginRegistry

Preprocessor

MapHeaderFiles

The listener (type of PPCallbacks)

In the PPCallbacks implementation, we override the following methods:

virtual void FileChanged(...)

virtual void FileSkipped(...)

virtual void InclusionDirective(...)

virtual void EndOfMainFile()

I. Stacking header files -

virtual void FileChanged(SourceLocation Loc, FileChangeReason Reason,
SrcMgr::CharacteristicKind FileType, FileID PrevFID = FileID())

• This callback is invoked whenever a source file is entered or exited (=Reason)
• We stack the file names as the compiler enters them recursively – every

entered header file is included by the file that is in the top of the stack
- On entering file, we push to stack
- On exiting file, we pop from stack

• Header files are often skipped, for optimization - the compiler will not enter
them, so the callback defined above will not be invoked
• This defeats the purpose of creating an exhaustive #include-s map
• In order to stack these headers too, we will override this method too

virtual void FileSkipped(const FileEntry &SkippedFile,
const Token &FilenameTok, SrcMgr::CharacteristicKind FileType)

II. Handling skipped files -

III. Handling system headers -

• To avoid (overwhelming) clutter, we can narrow our mapping to header files
that are created by the user

- this can be decided by an argument to the plugin
• In order to exclude system headers from the full depth headers mapping, we

need to identify them
• These headers are usually identified by the < > delimiters – which are present

in the actual inclusion directive

virtual void InclusionDirective(SourceLocation HashLoc, const Token
&IncludeTok, StringRef FileName, bool IsAngled, CharSourceRange
FilenameRange, const FileEntry *File, StringRef SearchPath, StringRef
RelativePath, const Module *Imported, SrcMgr::CharacteristicKind FileType)

IV. Saving the finding -

• We will write to a file all of the header names we’ve collected
• This information will be saved in a format that expresses the hierarchy

between the files: the included files are children of the including file
• To get this graph visually, we can write this information in the format required

by Graphviz

virtual void EndOfMainFile()

Standing on the shoulders of giants

